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1. Appendix S1: Assessing structure from the NLID

Several structural properties were quantified for each of the three empirical

food-webs (see Appendix S2). Primary among these were nestedness (N ; figure

1a) and modularity (M; figure 1b), because these properties are thought to

have important ramifications for the dynamics of ecological systems [1, 2, 3].

To quantify nestedness, we use the NODF (Nestedness based on Overlap and

Decreased Fill) metric [4], where a value of 0 denotes an un-nested network and

a value of 1 denotes a fully nested network.

Modularity has traditionally been quantified as the local density of links in a

network [5], although other metrics exist [6]. Because our predator-prey networks

have two trophic levels, we use the density of squares to estimate the average local

link density [7]. A ‘square’ occurs when four nodes are connected by at least four

links, and the average density of squares (ρ̄s) equals the number of squares in a

network divided by the number of potential squares in a completely connected

network, i.e. the local link density. This metric has the advantage of being

analytically tractable for any network size, whereas other metrics use optimization

methods [6]. As the connectance, C, of a network increases (C = l/mn, where l is

the number of links in a network, and m and n are the number of prey and predator

species, respectively), the local link density increases. We calculate modularity as

M=
ρ̄s − C

ρ̄s + C
. (1.1)

If the average local link density becomes greater than the overall link density,

M→+1; if the average local link density becomes less than the overall link

density, M→−1 (cf. [8]).

In addition to nestedness and modularity, we also quantified: 1) The frequency

of networks characterized by low local link density (M=−1; figure 1b); 2) the

number of isolated components in a network, defined by disconnected subgraphs,

each with ≥ 2 connected species (figure 1c); 3) the number of isolated species
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in a network (figure 1c); and 4) the frequencies of four-species subgraphs

(subunits of 2 predators connecting 2 prey) of which there are seven possible

arrangements (figure 1d). The quantification of these six structural features

(nestedness and modularity in addition to the four itemized structures) permits

a holistic description of interaction patterns within a predator-prey network that,

as a whole, can be used to compare the structural similarity of independent

communities.

We assessed the ability of network models derived from NLIDs, with identical

forbidden link structures as the empirical systems, to predict the six structural

properties of empirical predator-prey networks. Predictive ability was scored by a

similarity index (si) which varies between 1 (absolute similarity) and 0 (absolute

dissimilarity) across cutoff values i (see Appendix S2 for details). We tested

whether a good empirical parameterization of the NLID was enough to predict

the general structure of empirical predator-prey networks. If so, then detailed

quantification of strength variation within-links (PIDs) would not be necessary

to characterize network structure. We varied the NLID standard deviation (SD)

of our model networks towards higher and lower values than that measured from

the empirical network, altering NLID shape. We then measured the structural

similarity of empirical networks against models drawn from the NLID with altered

SDs. If the NLID is strongly predictive of the empirical network structure, we

expected a maximum value of si averaged across cutoffs i (s̄max) when the model

networks are drawn from the NLID matching that of the empirical network (figure

2a-c). This would suggest that the NLID encodes some structural properties of

the empirical system. By extension, it would indicate that the empirical network

structure is - in part - as would be predicted if species interactions were not

organized by ecological tradeoffs. The effects of individual network properties can

contribute to empirical and model network similarity differently. We show in figure

4 (main article) that nestedness tends to increase similarity (∆N values closer to

0), while modularity tends to decrease similarity (∆M values farther from 0).
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As the shape of the model NLID is altered by changing its SD relative to

the empirical SD, the effects on the underlaying patterns of interaction are not

straightforward. To understand how structural variation affects these patterns,

we explored how dietary unevenness varies as the shape of the NLID is altered.

Dietary unevenness describes consumers connected by strong link-strengths to

a small subset of available prey, and dietary evenness describes consumers

connected by weaker link-strengths to a greater proportion of available prey

(see Appendix S3 for details). Dietary unevenness can be used to measure the

degree of specialization among consumers. However, if prey abundance is strongly

skewed, even a predator without prey preferences (a generalist consumer) would

look strongly uneven, incorrectly suggesting specialization. As a consequence,

dietary unevenness cannot be compared among predators that consume prey with

different abundances. Here we compare consumer dietary unevenness across the

same set of prey within each site, which is equivalent to dietary specialization

among sympatric consumers. We measured the degree of specialization for

consumers in empirical and NLID-derived food-webs as the SD of the NLID was

varied (figure 2d-f).

Both Saskatchewan and Amboseli had highest similarity when the model

standard deviation matched the empirical NLID SD (NLID SD = 0.27 for both

systems; s̄max = 0.93 and 0.95 for Saskatchewan and Amboseli, respectively; figure

2a,b). The s̄max for Lake Naivasha was associated with a higher NLID SD than

predicted by the empirical food-web (SD = 0.18, s̄max = 0.96), however this

value is not significantly different from the s̄ for the empirical standard deviation

(SD = 0.16, s̄ = 0.95; Welch’s two sample t-test (df = 7.9): t = -0.17, p = 0.86;

figure 2c). The sensitivity analysis revealed that NLID-based networks that share

the same forbidden link structure have a high degree of structural similarity

to empirical predator-prey networks. Furthermore, we found that similarity is

strongly sensitive to the accurate parameterization of the NLID. This pattern

holds across most cutoff values, especially when both weak and strong links of
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the network were considered (i.e. low cutoff values) (figure 2a-c). By contrast,

when only strong links (higher cutoff values) were considered, SDs higher than

the empirical SD were equally suitable for reproducing structure observed in the

empirical networks.

The shape of the NLID had a large impact on the degree of dietary

specialization among consumers (figure 2d-f), though the relationship is nonlinear;

low NLID SD leads to model networks dominated by generalists, while high

SD leads to model networks dominated by moderate to strong specialists.

Model networks matching the SD of the empirical NLID (maximum similarity

between the model and empirical networks) resulted in intermediate values.

Furthermore, an analysis of specialization among consumers revealed higher

values than expected compared to model networks. This underestimate indicates

that Saskatchewan and East African predators have stronger prey preferences

than expected from model networks. Moreover, saturation of s̄i at high SD

for the strongest links in the networks (i = 0.4, 0.5) suggests that structure

collapses similarly for empirical and model systems when specialist consumers

dominate. This indicates that 1) the inclusion of weaker links in the system

has a disproportionate impact on structure, particularly when the food-web is

dominated by specialists, and 2) the structures imparted by the strongest links

are not different from those generated by random processes and are less sensitive

to NLID shape. Importantly, our results show that much of the structure of

these predator-prey networks is predictable from link-strength variance at the

level of the system. This means that the variance in strength among links in

a predator-prey network, without regard to the specific and unique interactions

among species, strongly influences structure. Whether models derived from the

NLID accurately predict specific structures such as nestedness or modularity is

not known.
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2. Appendix S2: Isotopic systems and mixing model results

We used the isotopic values of predators and prey from three systems: one from

Saskatchewan, Canada (figure S3, [9]), and two from Kenya: Amboseli (figure

S4, [10]), and Lake Naivasha (figure S5 [11]). To calculate distributions of the

contribution of each prey to a predator’s diet, we first accounted for trophic

discrimination factors, such that isotopic fractionations that occur between

trophic levels are eliminated. For both African systems, predator δ13C and

δ15N values were corrected by −1 ± 0.5! and −3.5 ± 0.7! respectively, thereby

assuming that all carnivores had high-quality protein-rich diets [12, 13, 14].

For Saskatchewan, Canada, predator δ13C and δ15N values were corrected

by −1.3 ± 0.5! and −4.5 ± 0.7! respectively, more closely matching values

calculated by [15] in the wolf-moose-beaver Isle Royale system. This differs from

the discrimination factors used by [9].

We corrected for potential underestimates of isotopic variance for predators

with low sample sizes by incorporating variance measurements for the same species

in nearby systems. Measures of variance for hyenas and cheetahs in southern

Kenya (unpublished data) were used as more conservative estimates of variance for

the same species in Amboseli. Similarly, measures of variance for lions, leopards,

and cheetah from central and southern Kenya (unpublished data) were used as

more conservative estimates of variance for the same species in Lake Naivasha

(final values are reported in table 1). The means and standard deviations presented

are similar to the isotopic values of the same species from other African systems

[16, 17]. In this manner, variance for under-sampled predators was increased,

conservatively increasing the uncertainty represented in the posterior probability

distributions calculated by mixSIR.

Link-strength distributions were assessed for predator:prey pairs in all systems

(with the isotope mixing model MixSIR v.1.0.4 [18]; figure S3,4) with the

exception of the Naivasha food-web where some browsers with very low δ13C

values were too isotopically similar to resolve dietary information [11] and were
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binned as a functional group (figure S5). Because these browsers had isotopic

values that differed significantly from all predators in the system, binning does not

significantly influence the estimation of interaction distributions for their primary

prey.

3. Appendix S3: Calculation of Similarity and Specialization

The application of the cutoff algorithm to both the empirical and model food-webs

results in a series of vectors vi that describe the topological properties of food-

webs represented in the ensemble across each of the i cutoff values. The elements

of both vectors are defined by values for: nestedness, modularity, the proportion of

networks with positive connectance but no squares (where a square is formed by

connecting four nodes with four links), the number of single nodes, the number of

components, and the frequencies of each four-node motif. All elements in a vector

are normalized to vary between 0 and 1 (except for modularity, which can vary

between -1 and 1), thus limiting each element of the vector to a standardized range.

We emphasize that the elements of these vectors were chosen arbitrarily (other

structural properties of networks could be included as well), such that the absolute

similarity between two food-webs should be assessed relative to other food-webs

measured with the same indices included in the similarity index. The degree to

which a model food-web predicts the structural properties of an empirical food-

web can be quantified with a similarity coefficient

si =
vi,empirical · vi,model

|vi,empirical||vi,model|
, (3.1)

where vi,empirical and vi,model are vectors of topological metric values

corresponding to a cutoff value i∈ {0.1 : 0.5} for the empirical and model

networks, respectively, and | · | denotes the euclidean norm for the given vector

[19, 20]. The similarity index si can vary between 0 and 1; a value of 0 indicates

absolute dissimilarity, while a value of 1 indicates absolute similarity. We note
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that this similarity index is mathematically related to the cosine of the angle

between two vectors. To assess the similarity of network ensembles, rather than

a single network, we bootstrapped 1000 network vectors from both the empirical

and model ensembles, thereby generating a distribution of similarity values

that represent the topological equivalency between the empirical and model

probabilistic food-webs.

Calculation of Consumer Dietary Specialization

The degree of consumer dietary unevenness, or specialization (ε) can be directly

calculated from the mixing model results of a consumer’s isotopic values (relative

to those of its prey). We first define a consumer dietary vector that has equally-

weighted prey contribution-to-diet links as an generalist consumer end-member

(γ = {1/n, ..., 1/n}, where n is the number of potential prey, and where the sum

of the vector equals unity), and a consumer with only a single link to one of

its potential prey as a specialist consumer end-member (φ = {1, 0, ..., 0}). In n-

dimensional diet-space, where n represents the number of potential prey, we

define the centroid by the generalist consumer. The Euclidean distance of a given

consumer’s diet to the centroid can then be measured. We divide this distance by

the Euclidean distance from the centroid to the specialist consumer end-member

such that consumers with different numbers of prey can be directly compared (Eq.

3.2). Thus, consumer dietary unevenness of a consumer j can be quantified by

εj =

√

∑n
k=1(wjk − γjk)2

√

∑n
k=1(φjk − γjk)2

, (3.2)

where the subscript k refers to a prey item in the diet of the consumer j.

Consumer dietary specialization is therefore constrained to vary between 0 and

1, where 0 represents a maximally generalist consumer, and 1 represents a

maximally specialist consumer. We note that the use of entropy-based unevenness

measurements [21, 22] result in similar estimates.
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Square:
4-nodes : 4-links

(a) (b) (c)

Subgraph 2 Subgraph 3 Subgraph 4 Subgraph 5 Subgraph 6 Subgraph 7

(d)

Figure S 1. (a) A nested pattern of interaction, where the consumers (black circles) towards
the right consume prey (white circles) that are subsets of the consumers towards the left. (b) A
network square (circled), with four nodes connected to four links. Modularity is both a function of
the average density of squares relative to a fully connected network, and network connectance. In
this example, at high cutoff values, the density of squares → 0, while connectance > 0, resulting
in a modularity value of -1 (see Eq. 1.1). (c) Two network components and an isolated node
(stippled). (d) Network Subgraphs 2 through 7. Subgraph 1 is represented by 2 predators and 2
prey not connected by interactions (not shown).
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Figure S 2. (a-c) Sensitivity analyses of the Saskatchewan, Amboseli, and Lake Naivasha food-
web ensembles, respectively. Similarity values are on the y-axis, and the x-axis ranges from a
lower standard deviation (SD) than the empirical SD to a higher SD (stippled line denotes the
empirical SD). Curves describe median similarity values for each cutoff (legend), and whiskers
denote 25th and 75th percentiles. Underlined values mark the SD with highest average similarity.
(d-f) Consumer specialization for low, empirical, and high SD, and for Saskatchewan, Amboseli,
and Naivasha consumers, respectively. When NLID SD is low, generalists dominate. When
NLID SD is high, specialists dominate. When NLID SD is equivalent to the empirical value,
intermediate consumers dominate.
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Figure S 3. Proportional contribution of prey to the diet of predators (PIDs) in the Saskatchewan
system. PID estimates are from the Bayesian isotope mixing model MixSIR. Predator:prey PIDs
that are not reported indicate the presence of a forbidden interaction. Species marked with stars
represent the larger predators in the system; topological properties were assessed with just
these predators included, and are reported in figure S6. Forbidden Links: Fox, fisher, marten,
and raccoon to bison, caribou, elk, moose, white-tailed deer; coyote, lynx, and wolverine to
bison, caribou, moose.
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Figure S 4. Proportional contribution of prey to the diet of predators (PIDs) in the Amboseli
system. PID estimates are from the Bayesian isotope mixing model MixSIR. Predator:prey
PIDs that are not reported indicate the presence of a forbidden link. Forbidden Links: cheetah
to buffalo, giraffe, wildebeest, zebra.
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Figure S 5. Proportional contribution of prey to the diet of predators (PIDs) in the Naivasha
system. PID estimates are from the Bayesian isotope mixing model MixSIR. Predator:prey
PIDs that are not reported indicate the presence of a forbidden link. A subset of browsers were
too isotopically similar to resolve dietary information, though they had values set apart from all
potential predators, suggesting minimal dietary inclusion. As such, they were binned together as
a ‘browser’ functional group and include: Steenbok, Dik Dik, Baboon, Grey Duiker, Klipspringer,
Bushbuck, and Eland. Forbidden Links: cheetah and leopard to buffalo, waterbuck, and zebra.
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Figure S 6. The difference (∆) in nestedness (empirical - model values) for Saskatchewan,
Canada, with only the large predators (and predators that primarily consume larger prey)
included in the food-web ensemble. Predators include: Black bear, Coyote, Lynx, Wolves,
and Wolverine. These results are qualitatively similar to those obtained for the full food-web,
suggesting that the structure of interactions is fairly robust to modification. Red: Model 1; Blue:
Model 2.
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Figure S 7. The difference (∆) in modularity (empirical - model values) vs. the difference
in nestedness for the three isotopic food-webs. Each point corresponds to a measurement
of nestedness and modularity for cutoff values 0.1 to 0.5. Model 1 does not incorporate
body size constraints, while Model 2 does incorporate body size constraints. In each
system, there is a strong negative relationship between modularity and nestedness for
Model 2 (though this relationship is not statistically significant for the Naivasha system).
Saskatchewan Model 1: R2 = 0.47, p > 0.05, Model 2: R2 = 0.96, p" 0.05. Amboseli Model
1: R2 = 0.09; p > 0.05, Model 2: R2 = 0.86; p < 0.05. Naivasha Model 1: R2 =−0.33; p > 0.05,
Model 2: R2 = 0.25; p > 0.05.
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Species δ13C δ13C SD δ15N δ15N SD
Amboseli

Panthera leo -9.04 1.67 11.07 0.45
Crocuta crocuta -9.16 0.89 12.16 1.09
Acinonyx jubatus -17.21 1.95 10.07 1.02
Naivasha

Panthera leo -7.21 1.64 6.30 0.44
Crocuta crocuta -8.74 0.89 7.70 1.10
Panthera pardus -8.61 0.51 6.70 2.04
Acinonyx jubatus -14.21 1.95 6.60 1.02

Table S 1. Mean and standard deviations (SDs) of isotopic values for African predators and prey
that were used to assess link-strengths with the Bayesian isotope mixing model MixSIR. See
Appendix S1 for details.
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System size range (# links) a b
Mean Error
1:100 0.06 3.02
101:200 0.05 3.88
201:300 0.05 4.24
301:400 0.04 4.74
401:500 0.04 5.19
SD Error
1:100 0.09 2.86
101:200 0.08 3.87
201:300 0.07 4.30
301:400 0.06 4.57
401:500 0.06 5.06

Table S 2. To determine the rate at which estimation of the mean and standard deviation (SD)
of the NLID could be estimated as sampling effort increased, exponential curves (y = ae

bx) were
fitted to binned numerical results, where each bin represents an increase in ecosystem size by
100 links. Mean error and SD error were calculated as the difference between the true NLID
mean and SD, respectively, and that estimated from subsampling PIDs.
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∆N Saskatchewan Amboseli Naivasha
Cutoff df t p df t p df t p

0.1 57.7 -0.62 0.54 57.9 -3.87 < 0.01∗ 57.9 -4.08 < 0.01∗

0.2 51.7 -1.97 0.05 54.8 -0.507 0.61 57.2 -0.68 0.52
0.3 57.9 -1.31 0.20 53.9 -2.53 0.01∗ 55.2 -1.81 0.07
0.4 55.9 -2.35 0.02∗ 56.6 -0.06 0.95 57.0 -2.24 0.03∗

0.5 56.8 1.44 0.16 48.3 -2.60 0.01∗ 57.4 -1.57 0.12

∆M Saskatchewan Amboseli Naivasha
Cutoff df t p df t p df t p

0.1 53.0 2.25 0.03∗ 57.4 1.44 0.16 54.4 -1.49 0.14
0.2 57.9 -0.05 0.96 48.6 -0.61 0.55 57.0 1.21 0.23
0.3 45.1 -1.63 0.11 57.6 3.30 < 0.01∗ 57.9 0.25 0.81
0.4 57.2 -0.63 0.53 56.2 1.55 0.13 52.7 2.70 < 0.01∗

0.5 50.8 -1.02 0.31 52.2 4.49 " 0.01∗ 54.3 3.20 < 0.01∗

Table S 3. Welch t-test results for ∆N and ∆M between Models 1 and 2. Model 1 does not
include body size constraints, while Model 2 does include body size constraints (refer to figure 6,
main text). For the most part, the mean values of Model 1 and 2 are not significantly different,
with some exceptions indicated by the asterisk (*).


