
Electronic Supplementary Material for:

Bayesian characterization of uncertainty in species

interaction strengths

Christopher Wolf1∗, Mark Novak2, and Alix I. Gitelman1

1Department of Statistics, Oregon State University,

Corvallis, Oregon 97331, United States

2Department of Integrative Biology, Oregon State University,

Corvallis, Oregon 97331, United States

∗corresponding author (wolfch@science.oregonstate.edu)

1



S1 On Novak and Wootton’s ‘Species x’

This paper expands on the observational method for estimating attack rates presented

by Novak and Wootton (2008):

ai =
FiAx

(Fx − Ax)hiNi

, eqn S1

where ai is the attack rate, hi is the handling time, and Ni is the abundance, all for the ith

prey species. Ai and Fi are the proportions of all predators and feeding predator

respectively feeding on the ith prey species. x refers to an arbitrarily chosen prey species

that is the same for all ai. Here we show that this equation can also be written in a more

simplified form, showing that the estimates are not dependent on the choice of species x.

Define A0 to be the observed proportion of predators that are not feeding, so that

A0 = 1−
S∑
i=1

Ai. Then, the F ′is can be obtained by normalizing A′is: Fi = Ai
S∑

j=1
Aj

= Ai

1−A0
.

Noting that:

Fx − Ax =
Ax

1− A0

− Ax =
Ax − Ax(1− A0)

1− A0

=
Ax[1− (1− A0)]

1− A0

=
AxA0

1− A0

. eqn S2

It follows that

FiAx
Fx − Ax

=
Ai

1−A0
· Ax

AxA0

1−A0

=
AiAx
AxA0

=
Ai
A0

. eqn S3

This can be further simplified by noting that the A′is have a common denominator (total

number surveyed). This means that the original attack rate equation can be written as

ai =
Ai
A0

· 1

hiNi

=
# feeding on i

# not feeding
· 1

hiNi

. eqn S4
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This shows that the estimate does not involve species x. Moreover, the total number

surveyed need not be known to estimate a subset of the attack rates.

S2 A Bayesian Attack Rate Estimator

The Bayesian machinery is built around Bayes theorem:

f(θ|data) ∝ f(data|θ) · f(θ). eqn S5

Here, f(data|θ) is the likelihood: a function specifying the likelihood of the observed data

in terms of unknown parameters θ. f(θ) is the prior: a probability density function

reflecting prior beliefs or uncertainty about the parameters. Together, these inform

f(θ|data): the posterior distribution of the parameters given the data. Here, we consider

only objective (also called non-informative) priors, assuming an absence of prior beliefs or

information about the parameters in question (Berger, 2006). In other situations,

informative priors constructed from previously obtained knowledge or data may be useful.

A parametric formulation of the attack rate estimator (eqn 2) is

ξi =
αi
α0

1

νiηi
. eqn S6

Here, for the ith prey species, ξi is the unknown attack rate, νi is the population prey

abundance, ηi is the population handling time, αi is the population proportion of predators

feeding, and α0 is the population proportion of predators that are not feeding on any prey

species. In each case, the parameters refer to the broader (statistical) population, rather

than sampled data only. By framing the attack rates this way, we are able to estimate

them in the context of the broader population about which inference is desired. Note that
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eqn S6 is derived from a snapshot estimator of attack rates (eqn 2), and does not imply, for

example, that attack rates vary inversely with abundances. Rather, attack rates are

parameters in the multi-species Type II functional response (eqn 1) and assumed fixed

throughout.

Frequentist approaches for combining data from multiple sources to estimate functions

of parameters (as in eqn S6) generally rely on bootstrap methods or asymptotics like the

multivariate delta-method. Both of these approaches exhibit poor small-sample

performance (Efron and Tibshirani, 1994; Kilian, 1998). This is relevant when dealing with

predator feeding surveys as the Ai in eqn 2 are often very small for the rare prey species

that typify predator diets (Rossberg et al., 2006). Small values of Ai (analogous to having

a small sample) can be problematic even when the total number of predators surveyed is

large (Agresti and Coull, 1998). Ignoring variation in abundance and handling time

estimates to focus on the variation within the feeding surveys may avoid this problem, but

will lead to underestimation of the uncertainty in the attack rate estimates. The Bayesian

framework circumvents this problem.

If data on prey-specific feeding proportions (F ), abundances (A), and handling times

(H) are collected independently, the joint likelihood of these distributions may be written

as:

f(F ,A,H|α,ν,η) = f(F |α)f(A|ν)f(H|η). eqn S7
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Provided that the corresponding priors are also independent, Bayes theorem implies that

f(α|F ) ∝ f(F |α)f(α), eqn S8a

f(ν|A) ∝ f(A|ν)f(ν), eqn S8b

f(η|H) ∝ f(H|η)f(η). eqn S8c

These may therefore be fit with independent models for each component. That is, the

posterior distributions of the attack rates in eqn S6 may be estimated by using Markov

Chain Monte Carlo (MCMC) to obtain samples from each of the three posterior

distributions in eqn S8 and combining these using eqn S6. If the three types of data are not

gathered independently, then it is necessary to consider likelihood or prior models that

account for this dependence (see Appendix S5).

Model formulation (mathematical details)

Here, we present additional model details for our case study with likelihood and prior

distributions given in statistical notation. This supplements the model setup description

given in the “Bayesian model formulation” section of the main text.

Modeling the feeding surveys – Letting P be the total number of predators surveyed, Xi

the number observed feeding on prey i, and X0 the number not feeding, we model the

combined feeding survey data using a multinomial likelihood with Dirichlet prior:

(X0, X1, ..., XS) ∼MultP (α0, α1, ..., αS) eqn S9a

(α0, α1, ..., αS) ∼ Dirich(c, c, ..., c). eqn S9b
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The resulting posterior distribution is also Dirichlet:

(α0, α1, ..., αS)|x ∼ Dirich(c+ x0, c+ x1, ..., c+ xS). eqn S10

Modeling the abundance surveys – Letting Y1, ..., Yn correspond to the n prey abundance

measurements, and by conditioning on whether or not a zero occurs, we can write the

likelihood density of the zero-inflated gamma (ZIG) distribution as

g(y;α, β, ρ) = ρI[y=0][(1− ρ)f(y, α, β)]I[y>0], y ≥ 0, eqn S11

where ρ is the probability of a zero, f(y;α, β) is the usual gamma density with shape α,

rate β, and mean α
β
, and I[·] is the indicator function that equals 1 when its argument is

true and 0 otherwise (Ospina and Ferrari, 2012). The ZIG density is separable in ρ and

(α, β) – that is, it can be expressed as the product of a function of ρ and a function of

(α, β). So, we can model the zero-inflation parameter separately, provided that a separable

prior is used. Thus, for each prey species, we model the number of observed zeros using a

binomial distribution with a uniform prior on ρ and we take the gamma distribution

parameter priors to be log(α) ∼ Unif(−100, 100) and log(β) ∼ Unif(−100, 100) to

approximate the independent scale-invariant non-informative prior

f(α, β) = f(α)f(β) ∝ 1
α

1
β
, which is equivalent to an (improper) uniform prior on the

logarithmic scale (Syversveen, 1998).

Modeling the handling time experiments – We consider the ith handling time observation

for a given prey species to be associated with a covariates vector Xi consisting of 1

followed by temperature, predator size, and prey size (all log transformed). We then model
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the likelihood of the ith handling time with a modified-normal likelihood written as

Hi ∼ Nli(e
XT

i β, σ2) eqn S12

where the subscript li refers to the censoring “window” length and indicates that we added

a Unif(− li
2
, li
2
) error to the normal distribution (corresponding to the interval censoring

with which handling times were observed). As noted in the main text, the exponential link

of eqn S12 avoids negative mean handling time estimates.

Treating the field covariates (predator size, prey size, and temperature) as random to

account for sampling variability, we model the distributions of the (log-transformed)

covariate observations X1, ...,XN , where N is the total number of field observations, as

being independent, identically distributed, and drawn from a multivariate normal

distribution with mean vector µ and covariance matrix Σ′. We use non-informative

multivariate normal and inverse Wishart priors for µ and Σ′ respectively (Fink, 1997).

Letting X∗ follow the posterior predictive distribution (our estimate of the distribution of

the covariates), we may write the mean handling time as

E(H) = E[E(H|X∗)] = E(eβ
TX∗

). eqn S13

As described in the main text, we can estimate this expectation by sampling from the

regression parameters’ posterior distribution, sampling new covariates from their posterior

predictive distribution, computing eβ
TX∗

for each sample, and averaging across all samples.
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Model implementation: Putting the pieces together to estimate per capita attack rates

Using the likelihoods and priors of the feeding surveys, abundances and handling

times, we draw samples from the parameters’ posterior distributions using Markov Chain

Monte Carlo (MCMC). We use JAGS with the R package ‘rjags’ for MCMC sampling

(Plummer and Stukalov, 2014). We then combine parameter samples to produce samples

from the attack rate posterior distribution on each prey species (see eqn S6). This treats

handling times, H , as being independent of the predator feeding surveys, F , even though

we use covariate observations of predator size, prey size and temperature from the feeding

surveys informing F to inform H by combining them with the laboratory-based handling

time regression coefficients associated with these covariates. We establish the validity of

this assumption by examining the relationship between feeding proportions and covariate

averages between the individual surveys (Appendix S5).

We verify Markov chain convergence using trace plots and the Gelman and Rubin

convergence diagnostic (Gelman and Rubin, 1992), remove samples obtained before the

chains had converged (i.e. burn-in time), and thin each chain to ensure independence

among the remaining samples. We compute scale reduction factors – a convergence

diagnostic that compares ‘within’ versus ‘between’ chain variability – using 250

independent chains with random initial values. We select burn-in times and thinning values

separately for feeding survey, prey abundance, and handling time models based on trace

plots and autocorrelation function plots. We base inferences on 1,000 samples after

confirming that independent sets of 1,000 samples led to the same conclusions.
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S3 F-distribution median

In general, the median of the F-distribution does not have a closed form. However, we

can derive an approximation by relating the F-distribution to the beta-distribution.

Let X ∼ Fm
n . We can express X as the ratio of scaled, independent Chi-squared

distributions Cm ∼ χ2
m and Cn ∼ χ2

n:

X =
Cm/m

Cn/n
eqn S14

It follows that we can express X as the ratio of scaled independent gamma distributions

Gm ∼ gamma(m
2
, 2) and Gn ∼ gamma(n

2
, 2):

X =
Gm/m

Gn/n
eqn S15

=
n

m

Gm

Gn

eqn S16

We can then normalize the gamma distributions:

X =
n

m

Gm

Gm+Gn

Gn

Gm+Gn

eqn S17

Letting (D1, D2) ∼ Dirich(m
2
, n
2
) and using the relationship between Dirichlet and gamma

distributions,

X =
n

m

D1

D2

eqn S18

Using the marginal distribution for Dirichlet components result and the fact that
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D1 +D2 = 1, we have that

X =
n

m

B

1−B
eqn S19

where B ∼ Beta(m
2
, n
2
). Note that this is a monotone transformation of B, so it preserves

the median. When m > 2 and n > 2, the median of B is approximately
m
2
− 1

3
m
2
+n

2
− 2

3

(Kerman,

2011). Substituting this result, we have that

med(X) =
n

m

med(B)

1−med(B)
eqn S20

=
n

m

m
2
− 1

3
m
2
+n

2
− 2

3
n
2
− 1

3
m
2
+n

2
− 2

3

eqn S21

=
n

m

m
2
− 1

3
n
2
− 1

3

eqn S22

=
n

m

3m− 2

3n− 2
eqn S23

=
n

2n− 2

3m− 2

m
eqn S24

S4 A Hierarchical Model for Abundances

We also consider a hierarchical model as in Cressie et al. (2009) to account for the

spatial and temporal structure in the prey abundance data. Although we lack sufficient

data to estimate the parameters in this model (i.e. MCMC chains fail to converge with

non-informative priors), we present the details here to show how our Bayesian approach

can be extended to account for dependence due to spatial, temporal, or other structure.

For a single prey species, the data have the form Yijkl where i is the year (2005 or

2006), j is the season (Summer or Winter), k is the transect (1 or 2), and l is the quadrat

(1 to 5). There are no data for summer 2005. Transects are different for each year and
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season. To account for the structure of the data, the following hierarchical model can be

used (distributions independent except for µ∗s):

Yijkl ∼ ZIG(α =
µ∗2ijk
τ
, βij =

µ∗ijk
τ
, ρ)

ρ ∼ Unif(0, 1)

f(τ) ∝ 1

τ

log(µ∗ijk) = µ+ θi + ψj + φk(ij)

µ ∼ N(0, 10002)

θi ∼ N(0, σ2
θ), ψj ∼ N(0, σ2

ψ), φk(ij) ∼ N(0, σ2
φ)

f(σ2
θ) ∝

1

σ2
θ

, f(σ2
ψ) ∝ 1

σ2
ψ

, f(σ2
φ) ∝ 1

σ2
φ

In this model, the responses are ZIG with non-informative prior on the gamma variances

and probability of a zero. The mean responses are related to covariates using a log link.

The overall mean of the logarithms has non-informative prior µ ∼ N(0, 10002). The year,

season, and transects are independent and normally distributed with non-informative

priors on the normal distribution variances. The parameter of interest – the overall mean –

is (1− ρ)eµ.

Hierarchical modeling of predator feeding survey and handling time data (field

measurements of predator/prey size and temperature) can be done with a similar approach

when sufficient data are available. In particular, more data at broader scales (e.g. year,

transect) is needed to estimate the variability at these scales.
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S5 Accounting for dependence among information sources

In our dataset, predator feeding surveys included covariate information (predator size,

prey size, and temperature) that was used to estimate field handling times on the basis of

regression models for handling times parameterized using laboratory data. In estimating

attack rates we treat the field covariates as part of the handling times data H and assume

they are independent of the feeding proportions data F . We assess the validity of this

assumption by plotting the regression covariates versus the observed feeding proportions,

as shown in Fig. S1. In this figure, every point represents a single feeding survey. The

x-axes are the averages of the (log-tranformed) covariate and the y-axes are the

proportions of predators feeding. Only two species had sufficient data to be plotted and

showed little evidence of a dependence.

If a lack of independence were evident it would need to be accounted for in the

covariates distribution model. That is, although our model for the covariates was a

multivariate normal, feeding survey level information (specifically proportions of predators

feeding on each prey species) could be added to the model to affects its multivariate mean.

This way, the mean covariate vector would be a function of the proportion of predators

feeding on that prey type. Posterior distribution sampling could then be done by first

sampling from the feeding proportions posterior distributions and then using the sampled

feeding proportions to obtain samples from the handling times.
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S6 Supporting Figures and Tables

log10 Predator Size (mm) log10 Prey Size (mm) log10 Temperature (°C)
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Fig. S1. Average field covariates versus feeding proportions. Each point corresponds to a

single feeding survey. Only species that appeared in more than three separate feeding surveys

are shown. Of the eight species and three covariates, only Xenostrobus pulex showed any

evidence of a relationship between feeding proportions and feeding covariates (i.e., between

F and H in eqn S7)
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Fig. S2. Given the skewed nature of prey-specific per capita attack rate posterior probability

distributions, the distribution median serves as a more appropriate point estimate than the

mean. Fig. 1 illustrates the difference between the posterior median and maximum likelihood

estimate of the ratio of feeding and non-feeding predators as a function of the number of

feeding individuals, showing how the neutral (c = 1
3
) prior minimizes this difference. As a

generalization of Fig. 1, in the left panel, we illustrate this difference as a function of both

the number of predators observed feeding and the number observed not feeding. The right

panel shows that the “optimal” value of c that minimizes this difference (a function of both

feeding and non-feeding individuals) is typically around 1
3
. In both cases, the survey data

from our example are shown as black dots
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Table S1. Summary of notation used in this manuscript. We use capital letters for random

variables (e.g. Xi) and lower-case letters for realizations of the random variables (e.g. xi).

Minor notation in the appendix that is not used elsewhere is generally not shown here

General type II functional response

Fi functional response on the ith prey species

ai attack rate on the ith prey species

hi handling time for the ith prey species

Ni abundance of the ith prey species

S number of prey species

Observed data

F ,A,H data for feeding surveys, abundances, and handling times respectively

Xi, xi number of predators observed feeding on the ith prey species

X0, x0 number of predators observed not feeding

N total number of feeding predator field observations

Xi covariates vector for the ith feeding predator

li length of censoring window for the ith handling time experiment

Probability distributions

f(x) generic probability distribution function

Bin(n, p) binomial distribution with size n and probability p

MultP (α0, ..., αS) multinomial distribution with size P and probabilities α0, ..., αS

Dirich(c, ..., c) Dirichlet distribution with concentration parameters c, ..., c
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(α0, ..., αS)|x distribution of (α0, ..., αS) conditional on x

Unif(−100, 100) uniform distribution with minimum -100 and maxmimum 100

Nli(µ, σ
2) normal dist. (mean µ, var. σ2) plus Unif(− li

2
, li
2
) censoring error

Parameters

αi population proportion of predators feeding on the ith prey species

α0 population proportion of predators not feeding

γi ratio of multinomial probabilities αi

α0

c Dirichlet distribution concentration parameters

α gamma distribution shape

β gamma distribution rate

ρ probability of a zero for the zero-inflated gamma distribution

σ2 handling time model variance

µ mean vector for (log-transformed) field covariates

Σ′ covariance matrix for field covariates

ξi population attack rate on the ith prey species

νi population abundance of the ith prey species

ηi population handling time for the ith prey species

Other

X∗ random variable following the posterior dist. of the field covariates
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Table S2. Predator feeding survey results grouped by predator size class. Predators were

split into eight groups based on their size in millimeters (shown in top row). For the most

frequently observed prey species (Chamaesipho columna and Xenostrobus pulex), we applied

our Bayesian method using feeding survey results from each size class separately to assess

how attack rates varied with predator size

Prey Species 6-10 11 12 13 14 15 16 17-28

Austrolittorina antipodum 0 1 0 0 1 1 0 0

Austrolittorina cincta 1 1 0 0 0 0 0 0

Chamaesipho columna 37 29 37 49 46 31 24 12

Epopella plicata 0 0 0 0 0 2 0 0

Mytilus galloprovincialis 0 1 0 0 0 0 0 0

Notoacmea Radial 0 0 0 0 0 1 0 0

Risellopsis varia 1 0 0 0 0 0 0 0

Xenostrobus pulex 19 13 22 37 31 27 20 16

Not Feeding 321 181 234 241 254 200 102 95

Total Surveyed 379 226 293 327 332 262 146 123

17



References

Agresti A, Coull BA (1998) Approximate is better than “exact” for interval estimation of

binomial proportions. The American Statistician 52:119–126

Berger J (2006) The case for objective bayesian analysis. Bayesian Analysis 1:385–402

Cressie N, Calder CA, Clark JS, Hoef JMV, Wikle CK (2009) Accounting for uncertainty

in ecological analysis: the strengths and limitations of hierarchical statistical modeling.

Ecological Applications 19:553–570

Efron B, Tibshirani RJ (1994) An Introduction to the Bootstrap. CRC Press

Fink D (1997) A compendium of conjugate priors. Technical Report

Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences.

Statistical science :457–472

Kerman J (2011) A closed-form approximation for the median of the beta distribution.

arXiv preprint arXiv:1111.0433

Kilian L (1998) Small-sample confidence intervals for impulse response functions. The

Review of Economics and Statistics 80:218–230

Novak M, Wootton JT (2008) Estimating nonlinear interaction strengths: an

observation-based method for species-rich food webs. Ecology 89:2083–2089

Ospina R, Ferrari SL (2012) A general class of zero-or-one inflated beta regression models.

Computational Statistics & Data Analysis 56:1609–1623

Plummer M, Stukalov A (2014) rjags: Bayesian graphical models using MCMC

Rossberg AG, Yanagi K, Amemiya T, Itoh K (2006) Estimating trophic link density from

18



quantitative but incomplete diet data. Journal of Theoretical Biology 243:261–272

Syversveen AR (1998) Noninformative bayesian priors. interpretation and problems with

construction and applications. Preprint statistics 3

19


