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Bayesian method. In particular, unlike in bootstrap confi-
dence intervals, the lower bounds of the Bayesian posterior 
intervals for attack rates do not include zero when a preda-
tor–prey interaction is in fact observed. We conclude that 
the Bayesian framework provides a straightforward, proba-
bilistic characterization of interaction strength uncertainty, 
enabling future considerations of both the deterministic and 
stochastic drivers of interaction strength and their impact 
on food webs.

Keywords Type II functional response · Parameter 
estimation · Non-informative neutral priors · Stochastic and 
deterministic variation · Allometric scaling

Introduction

Quantifying the strength of species interactions is an 
important ecological challenge. Estimates can be used 
to identify keystone species whose impacts are dispro-
portionate to their abundance (Power et al. 1996), help 
explain community structure (Wootton 1994), are key 
to understanding food web stability (Allesina and Tang 
2012), and often underlie forecasts of community dynam-
ics (Petchey et al. 2015; Novak et al. 2016). Unfortu-
nately, estimating interaction strengths in natural systems 
is difficult. In most food webs, the large number of pair-
wise interactions—and the large number of weak interac-
tions in particular—makes the use of manipulative field 
experiments logistically prohibitive. Thus, many have 
resorted to indirect means of estimation, such as using 
energetic principles or allometric relationships from met-
abolic scaling theory (e.g., Neutel et al. 2002; Rall et al. 
2012). More effort still has been devoted to estimating 
interaction strength parameters by characterizing predator 
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functional responses, largely on a pairwise experimental 
basis or by tracking predator kills over time (Vucetich 
et al. 2002; Jeschke et al. 2004).

As a consequence of the difficulty of estimating inter-
action strengths, most of the effort spent on characterizing 
species interactions has focused on obtaining point esti-
mates and performing hypothesis tests (see also, Poisot 
et al. 2016; Wells and O’Hara 2013; Melián et al. 2014). 
For example, Paine (1992) used a bootstrapping procedure 
only to quantify the uncertainty associated with the mean 
net strength of pairwise species interactions due to varia-
tion among experimental replicates. The focus has similarly 
been on obtaining point estimates and testing whether the 
associated parameters are different from zero in the use of 
functional response experiments designed to determine the 
dependence of feeding rates on prey and/or predator densi-
ties (e.g., Jeschke et al. 2004; Ramos-Jiliberto et al. 2016). 
Thus only the “deterministic core” (i.e.  systematic part) of 
alternative functional response formulations has generally 
been of interest. More specifically, functional responses 
have typically been fit to data using statistical models such 
as F = aN

1+ahN
+ ǫ (the Holling type II response) whereby 

variation in a predator’s feeding rate (F) is assumed to be 
controlled by a deterministic component governed by vari-
ation in variables such as abundances (N) or parameters 
such as attack rates (a) and handling times (h), and only 
a “shell” of stochastic variation (ǫ) is used to describe the 
variation left unexplained by the deterministic core. This is 
in contrast to the explicit modeling of the variation intrin-
sic to both the parameters and variables by describing each 
by a distribution that is itself governed by deterministic and 
stochastic sources of variation.

As in many other contexts (e.g., Elderd and Miller 
2016), the distinction between these two approaches to 
considering variation in interaction strengths (i.e., using a 
single error term, ǫ, or using a more comprehensive con-
sideration of uncertainty) is important when the uncer-
tainty of the estimates itself is of interest. This is particu-
larly true when forecasting the dynamics of species rich 
communities where indirect effects can rapidly compound 
even small amounts of uncertainty (Yodzis 1988; Novak 
et al. 2011). In such applications, knowledge of the (co-)
variation of parameter estimates is essential to assessing 
the sensitivity of predictions under plausible scenarios of 
estimation uncertainty. Of course, estimates of uncertainty 
are also important in comparing the utility and consistency 
of different interaction strength estimation methods (e.g., 
Wootton 1997) and for the biological interpretation of the 
estimates themselves. Estimates derived from the allomet-
ric relationships underlying metabolic scaling theory, for 
example, are typically associated with several orders of 
magnitude in variation left unexplained by species body 
sizes (Rall et al. 2012; Kalinoski and DeLong 2016).

In this paper we extend the observational method for 
estimating the per capita attack rates of predator–prey 
interactions presented by Novak and Wootton (2008) to 
characterize estimation uncertainty. Our interest in obser-
vational methods stems from their features of more easily 
accommodating instances of trophic omnivory than experi-
mental and time-series methods (Novak 2013); retaining 
the species-specific information lost in allometric and ener-
getic approaches; and, given a sufficient number of feed-
ing observations, estimating the species-specific attack 
rates for any subset (e.g., size class) of individuals within a 
focal predator population. Furthermore, with the method of 
Novak and Wootton (2008), attack rates may be estimated 
for all of a focal predator’s prey species simultaneously 
while also accounting for an inherent nonlinearity of preda-
tor–prey interactions because a multi-species Holling type 
II functional response—the most frequently observed func-
tional response form among non-filter feeding consumers 
(Jeschke et al. 2004)—is assumed in the method’s deriva-
tion. The Bayesian formulation we develop here connects 
the deterministic multispecies type II functional response 
model with each of the sources of empirical data that con-
tribute to the observational method’s per capita attack rate 
estimator. We thereby account for variation due to both 
sampling effort and the environment.

An issue with any Bayesian model is prior selection as 
posterior results may be sensitive to the choice of prior. 
This is a particularly sticky issue when data are sparse, 
wherein the prior weighs more heavily into results. Sparse 
data occur often in the context of species frequencies, par-
ticularly so in regard to species abundances and the diets of 
predators as these often range across many orders of mag-
nitude (McGill et al. 2007; Novak 2013). Therefore, as a 
key part of this work, we give careful consideration to prior 
selection in attack rate estimation, and we assess the effects 
of alternative prior choices in estimating per capita attack 
rates. Because of the sensitivity we see to prior selection, 
we introduce to ecology a new prior that we show has 
appealing properties.

To demonstrate the Bayesian method’s utility and to 
explore the sensitivity of our results to prior choice, we 
apply it to data on the predator–prey interactions of a New 
Zealand intertidal whelk, contrasting these estimates with 
those obtained by non-parametric and parametric boot-
strapping procedures. We show that posterior results using 
the sparse data typical of predator diet studies are sensitive 
to so-called non-informative priors commonly used in the 
Bayesian literature. We then show that our new ‘neutral’ 
non-informative prior gives Bayesian posterior point esti-
mates that are intuitively appealing and consistent with 
estimates obtained by bootstrapping approaches. Finally, 
we show how estimation uncertainty as described by 95% 
intervals is considerably more constrained and biologically 
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realistic within the Bayesian framework; how the species-
specific distribution of attack rates in whelks mirrors the 
skewed distribution of interaction strengths commonly seen 
at the community scale (Wootton and Emmerson 2005); 
how a deterministic component of intraspecific preda-
tor variation relates to predator body size; and, how our 
approach provides posterior probability distributions on 
per capita attack rate estimates that lend themselves to a 
more useful and descriptive characterization of interaction 
strengths than do point estimates alone.

Materials and methods

Model framework

Novak and Wootton (2008) introduced an observational 
method for obtaining point estimates of a generalist pred-
ator’s prey-specific per capita attack rates (ai; where i 
indexes prey) using data on prey abundances (Ni), handling 
times (hi), and “snapshot” feeding surveys in which the 
number of predator individuals feeding on each prey spe-
cies is recorded. Assuming that a multispecies type II func-
tional response

describes the predator population’s per predator feeding 
rate on the ith prey species, the estimator for the attack rate 
on the ith prey is equivalent to

(see Appendix S1). Here, Ai is the number of observed 
predators feeding on prey i, and A0 is the number of 
observed predators not feeding, during one or more snap-
shot surveys of the predator population.

Both Eqs. (1) and (2) are implicitly deterministic math-
ematical models that include no stochastic component, a 
deficiency we address below. The observational method 
capitalizes on the fact that handling times are more easily 
measured in laboratory experiments than in the field by 
using a smaller number of longitudinally-followed indi-
viduals than may be surveyed during a snapshot survey. 
Thus, even if handling time data are based on field obser-
vations, these will typically not be measured on the indi-
viduals observed during the snapshot feeding survey, hence 
the lengths of time those predators had been feeding are 
unknown and must be estimated. The feeding counts and 
species abundances similarly reflect estimates. In acknowl-
edgement of this, we develop a parameter-based version 
of Eq. (2)—a statistical formulation of the attack rate 

(1)Fi =
aiNi

1+
∑S

k=1 akhkNk

,

(2)ai =
Ai

A0

1

hiNi

estimator that can incorporate sampling and environmen-
tal variation explicitly. We describe this next in the con-
text of a specific case study. In Appendix S2, we provide a 
more general introduction to the principles of the Bayesian 
framework, as well as more specific details of our imple-
mentation than presented in the following main text.

Case study dataset

Our case study dataset pertains to the predatory whelk 
Haustrum scobina of the New Zealand marine intertidal. 
Haustrum feeds primarily on barnacles and mussels but 
also limpets and snails, often by first drilling through the 
shells of its prey. Handling times, which can be hours to 
days, are the times needed to drill and ingest a prey individ-
ual. The dataset we use contains information from replicate 
feeding surveys and quadrat-based prey species abundance 
surveys from a single site (Tauranga Head), and labora-
tory-based handling time experiments. We summarize the 
relevant attributes of these data below, referring to Novak 
(2010, 2013) for further details.

Fifteen feeding surveys were conducted during low 
tides over two years. In each survey, the number of whelks 
not feeding (x0) or feeding on each prey species (xi) was 
recorded, amounting to a total of 2089 whelks observed. All 
but two of the eight recorded prey species were observed 
very rarely (Table 1). The sizes of the predator individuals 
(both feeding and not feeding) and of the prey being fed 
upon were also recorded (±1mm), along with the average 
temperature of the month in which each survey was con-
ducted. These three covariates contribute to the determinis-
tic variation in per capita attack rate estimates.

Prey abundance surveys used five replicate quadrats 
randomly distributed along two transects, each repeated 
three times over the same time periods in which the feed-
ing surveys were conducted. As is typical of community 
abundance surveys, numerous zeros exist in these data as 
many species did not occur in every quadrat (Table 1). The 
presence of such zeroes reflects both deterministic vari-
ation associated with real variation in species abundances 
(i.e., no individuals may be present in the area), as well as 
stochastic variation associated with sampling effort (i.e., 
no individuals happened to be found in the quadrat). Aside 
from these zeroes, the abundance measurements are not 
integer counts but rather reflect densities derived on the 
basis of counts (for mobile prey) or percent cover-count 
relationships (for sessile prey) and the effective area of 
each quadrat as overlaid on an irregular substrate.

The dataset also contains data on laboratory experi-
ments that Novak (2010) used to build a statistical model 
for the relationship between handling times and predator 
size; prey identity and size; and temperature. These experi-
ments housed individual whelks in separate aquaria with 
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different prey and entailed hourly checks to determine 
handling time durations. As a result, handling time meas-
urements are interval censored, equally so for prey spe-
cies with short (hour-long) and long (multi-day) handling 
times. The uncertainty associated with the interval censor-
ing, along with estimation uncertainty associated with the 
experimental trials that were performed for each prey spe-
cies (Table 1), reflect sources of variation that are modeled 
in the error term of the statistical model for handling times.

Bayesian model formulation

Treating the prey abundances, handling times, and feed-
ing surveys data as independent, we now specify likelihood 
and prior models for each of these components. Following 
standard statistical practice for notation, we use uppercase 
letters to denote random variables, lowercase letters for 
realizations of random variables (the observed data), bold 
letters for vectors, and bold uppercase letters for matri-
ces of random variables. We use f to represent the density 
function of an arbitrary distribution, using the function’s 
argument(s) to indicate the specific distribution being ref-
erenced. For example, the density of a random variable X is 
indicated by f(x), and that of θ by f (θ), even though these 
are not necessarily density functions of the same form. A 
table of notation is given in the Appendix (Table S1).

Modeling the feeding surveys

We model the combined feeding survey data of feeding and 
not feeding individuals using a multinomial likelihood and 
a Dirichlet prior having concentration parameters c. The 
resulting posterior distribution is also Dirichlet (eqn S10), 
for which we focus on the posterior medians (rather than 
means) as our point estimates of interest because medians 
are generally the more appropriate measure of a skewed 
distribution’s central tendency.

Four concentration parameter values have been used in 
the past to make Dirichlet priors non-informative: Laplace’s 
prior (c = 1), Jeffreys’ prior (c = 1

2
), Perks’ prior (c = 1

S+1
 

where S + 1 is the length of the multinomial vector—see 
Appendix S2)—and Haldane’s prior (c = 0) (Hutter 2013). 
However, our preliminary investigations indicate that these 
priors result in posterior medians that differ substantially 
from the sample proportions, xi/x0, particularly for rarely-
observed prey. This leads to attack rate point estimates that, 
for rarely observed prey species, are entirely driven by the 
choice of the prior (i.e., the priors are not “non-informa-
tive” in this case, Fig. 1).

Because of the deficiency of the existing “non-inform-
ative” priors, we introduce to ecology a neutral prior, 
c = 1

3
, for modeling the ratios of multinomial param-

eters (i.e., the ratio of αi feeding and α0 not-feeding 

individuals). This prior extends the insight in Kerman 
et al. (2011) that when c = 1

3
, the multinomial parameter 

posterior medians closely match the maximum likelihood 
estimates (MLE), which in this setting correspond to the 
sample proportions. We derive the prior by letting γi =

αi
α0

 
and noting that the posterior distribution of γi is the ratio 
of Dirichlet components, which is the ratio of independ-
ent gamma random variables. This may be written as:

where xi and x0 are the observed counts of feeding and 
non-feeding individuals and g(y; d1, d2) is an F-distribu-
tion probability density function with d1 and d2 degrees of 
freedom. Using the approximation for the median of an 
F-distribution med(Fm

n ) ≈
n

3n−2
3m−2
m

 and setting it equal 
to the MLE of αi

α0
, xi
x0

, yields the solution c = 1
3
 (Appen-

dix S3). Thus, the neutral prior leads to posterior medi-
ans that closely match the MLEs for both multinomial 
parameters, as shown by Kerman et al. (2011), and for 
the ratios of multinomial parameters.

(3)

f (γi|xi, x0) =
x0 + c

xi + c
· g

(

x0 + c

xi + c
· γi; 2(xi + c), 2(x0 + c)

)

,
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Fig. 1  Comparison of alternative “non-informative” priors in esti-
mating the ratio of the proportions of feeding versus not feeding pred-
ator individuals. The x-axis reflects the number of predators observed 
in the process of feeding on a given prey species, with a total of 1629 
individuals assumed to have been not feeding, corresponding to the 
number not feeding in our case study dataset (Table 1). The y-axis 
shows the difference in logarithms of the posterior median using a 
Dirich (c, . . . , c) prior and the maximum likelihood estimate of the 
ratio (sample proportion). From top to bottom in the graph, the values 
of c are 1 (Laplace), 1

2
 (Jeffreys’), 1

3
 (neutral), 1

S+1
= 1

9
 (Perks’), and 

0 (Haldane’s). Our neutral prior (c = 1
3
) leads to estimates that most 

closely match the maximum likelihood estimates
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Modeling the abundance surveys

We use a zero-inflated gamma (ZIG) model to accommo-
date the numerous zeros in the prey abundance data. By 
conditioning on whether or not a zero occurs, the likeli-
hood density of the ZIG distribution can be expressed in 
terms of ρ (the probability of a zero) and f (y;α,β) (the 
usual gamma density with shape α, rate β, and mean α

β
 ). 

The ZIG density is separable in ρ and (α,β), which means 
that the zero-inflation parameter can be treated sepa-
rately, provided a separable prior is used. Thus, for each 
prey species, we model the number of observed zeros 
using a binomial distribution with a uniform prior on ρ . 
For the gamma part, we use log(α) ∼ Unif(−100, 100) 
and log(β) ∼ Unif(−100, 100) priors to approximate 
the independent scale-invariant non-informative prior 
f (α,β) = f (α)f (β) ∝ 1

α
1
β
 (Syversveen 1998).

Modeling the handling time experiments

We use regression to model the relationship between han-
dling times and the predator size, prey size and temperature 
covariates of the laboratory experiments. We obtain aver-
age ‘field-estimated’ handling times for use in the attack 
rate estimation by combining these regression coefficients 
with the same covariate information obtained during feed-
ing surveys.

Specifically, we consider the ith handling time observa-
tion for a given prey species to be associated with a covari-
ate vector, Xi, consisting of temperature, predator size, 
and prey size (all log transformed, and a 1 for the intercept 
term). We then model the likelihood of the ith handling time 
using a normal distribution (mean eX

T
i β, variance σ 2 ) plus a 

uniform (minimum − li
2
, maximum li

2
) error corresponding 

to the interval censoring with which handling times were 
observed. The exponential link of the normal distribution 
mean avoids negative mean handling time estimates.

Treating the field covariates (predator size, prey size, 
and temperature) as random to account for sampling vari-
ability, we model the distributions of the (log-transformed) 
covariate observations X1, . . . ,XN, where N is the total 
number of field observations, as independent, identically 
distributed, and drawn from a multivariate normal distribu-
tion with mean vector µ and covariance matrix �′. We use 
non-informative multivariate normal and inverse Wishart 
priors for µ and �′ respectively (Fink 1997). Letting X∗ 
follow the posterior predictive distribution (our estimate of 
the distribution of the covariates), the mean handling time 
is E(eβ

T
X
∗
) (Appendix S2). We estimate this expectation by 

sampling from the posterior distribution of the regression 
parameters, sampling new covariates from their posterior 
predictive distribution, computing eβ

T
X
∗
 for each sample, 

and averaging across all samples. The weak law of large 

numbers ensures convergence to E(eβ
T
X
∗
) as sample size 

increases (Petrov 1995).

Accounting for spatio‑temporal variation

As the feeding survey, prey abundance, and handling time 
data all have multiple levels of spatial and temporal struc-
ture (e.g.  structured variation across replicate quadrats, 
transects, seasons, and years), we consider several hierar-
chical models seeking to account for such possible depend-
encies (Cressie et al. 2009). Unfortunately, insufficient data 
at the larger scales made fitting such models impractical 
in the case of the whelk data, with models either failing to 
converge or resulting in inference similar to that from the 
non-hierarchical models. We provide an example of how to 
implement a hierarchical model to incorporate spatial and 
temporal variation in Appendix S4.

The data of our case study are sufficient to illustrate the 
utility of the observational approach for assessing the deter-
ministic influence of intraspecific predator variation (in the 
form of individual body size) on attack rate estimates. To 
accomplish this we divide all predator observations made 
during the feeding surveys into eight groups based on 
predator body size, with approximately equal numbers of 
predator individuals per group (Table S2). To draw infer-
ences relevant to theory on the allometric scaling between 
predator size and attack rates (Rall et al. 2012; Kalinoski 
and DeLong 2016), we convert predator lengths (shell 
length, L, in mm) to masses (total wet weight, w, in grams) 
using W = 1.214× 10−4 × L3.210 (Novak 2013). Our anal-
ysis here focuses on the two most common prey species (C. 
columna and X. pulex, Table 1) to ensure that sufficient data 
are available for each predator size group.

Estimating per capita attack rates

Using the likelihoods and priors given above for the feed-
ing surveys, abundances and handling times, we draw sam-
ples from the posterior distribution of the parameters using 
Markov Chain Monte Carlo (MCMC). We use JAGS with 
the R package ‘rjags’ (Plummer and Stukalov 2016) for 
the MCMC sampling. We then combine posterior samples 
using eqn S6 to produce samples from the posterior distri-
bution of attack rates for each prey species. We also plot the 
individual attack rate components’ posterior distributions 
separately to show how each part contributes to the attack 
rates’ posterior distributions. In our approach, we treat han-
dling times, H, as being independent of the predator feed-
ing surveys, F, even though we use covariate observations 
of predator size, prey size and temperature from the feeding 
surveys informing F to inform H by combining them with 
the laboratory-based handling time regression coefficients 
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associated with these covariates. We establish the validity 
of this assumption by examining the relationship between 
feeding proportions and covariate averages between the 
individual surveys (Appendix S5).

We verify Markov chain convergence using trace plots 
and the Gelman and Rubin convergence diagnostic (Gel-
man and Rubin 1992), remove samples obtained before the 
chains had converged (i.e., burn-in samples), and thin each 
chain to ensure independence among the remaining sam-
ples. We compute scale reduction factors—a convergence 
diagnostic that compares ‘within’ versus ‘between’ chain 
variability—using 250 independent chains with random 
initial values. With the help of trace plots we determine 
burn-in lengths separately for feeding survey, prey abun-
dance, and handling time models. We base our final infer-
ences on 1000 samples after confirming that independent 
sets of 1000 samples led to the same conclusions.

Comparison of Bayesian and bootstrapping procedures

We assess the utility and performance of our Bayesian 
approach by contrasting point and 95% interval estimates 
from (1) the model with Laplace’s prior (c = 1) on the Dir-
ichlet feeding proportions; (2) the model with Haldane’s 
prior (c = 0); and (3) the model with the neutral prior 
(c = 1

3
) to estimates obtained using (4) non-parametric and 

(5) parametric bootstrapping procedures.
For the non-parametric bootstrap, we sample with 

replacement from each of the feeding survey, prey abun-
dance, and handling time datasets until we draw the same 
number of samples as was present in each dataset (Efron 
and Tibshirani 1994). We calculate per capita attack rates 
for 1000 sets of such resampled data to estimate the mean 
and 95% confidence intervals of the corresponding boot-
strapped distributions.

We implement the parametric bootstrap using the like-
lihood function that we assume in our Bayesian method. 
That is, we use the data to estimate the parameters of the 
three likelihood functions (eqn S9, eqn S11 and eqn S12) 
by maximum likelihood, use these fit likelihood functions 
to simulate new datasets, and combine samples from the 
three distributions to estimate per capita attack rates. We 
then determine the medians and 95% confidence intervals 
of the resulting bootstrapped attack rate distributions.

In contrast to the Bayesian 95% credible intervals, 
which reflect the range of values within which a parameter 
will occur with 95% probability, the 95% confidence inter-
vals associated with bootstrapping do not have a simple, 
empirically useful interpretation. Rather, if 95% confidence 
intervals were repeatedly constructed using newly col-
lected equivalent datasets, 95% of them would contain the 
‘true’ value of the parameter. To highlight this difference, 
we use our Bayesian results to estimate the probability that 

the prey species with the highest posterior median attack 
rate has an attack rate greater than the species with the next 
highest posterior median attack rate, and so on. This type of 
inference is not possible within the frequentist framework 
(i.e., using the bootstrapped samples).

Results

The comparison of the log differences in the MLE relative 
to the posterior medians of the Bayesian model for several 
values of the concentration parameter c of the Dirichlet 
prior evidenced that our non-informative neutral prior, 
c = 1

3
, is indeed the most appropriate prior to use on the 

feeding proportions when the median is the preferred point 
estimate of the attack rate posterior distribution (Fig. 1). All 
other “non-informative” priors result in median point esti-
mates that are either considerably greater or less than the 
MLE at small sample sizes, converging only after signifi-
cantly more observations are assumed than in fact had been 
made for most of the prey species in our case study data 
set. Concentration parameter values greater than 1/3 result 
in median point estimates that are inflated relative to the 
MLE, whereas values less than 1/3 result in estimates that 
are less than the MLE.

Similarly, the comparison of the Bayesian and bootstrap-
ping approaches applied to the entire case study data set 
also indicates that the model with the neutral prior (c = 1

3
 ) 

was both sufficient for, and performs best in, describing the 
variation inherent in the estimated rates with which Haus-
trum scobina attacked its prey species (Fig. 2). With the 
neutral prior, the model exhibits median point estimates 
most closely matching the point estimates of the two boot-
strapping approaches regardless of the number of feeding 
observations per prey species. The two bootstrap distribu-
tions, in contrast, frequently exhibit lower 95% confidence 
interval end points of zero; a nonsensical result given that 
the consumption of these species was in fact observed. 
Consistent with Fig. 1, the models using Laplace’s (c = 1) 
or Haldane’s (c = 0) priors result in inflated and depressed 
attack rate point estimates respectively, particularly for 
prey species that were observed infrequently in the feeding 
surveys.

Figure 3 shows the posterior probability distributions of 
Haustrum’s per capita attack rates on each of its prey spe-
cies as estimated using the neutral prior (c = 1

3
). The dis-

tributions are roughly symmetric on the logarithmic scale, 
indicating right skew and justifying the use of the median 
as the point estimate of their central tendency. Using the 
posterior distribution of the attack rate, we estimate the 
probability of the attack rate on Mytilus galloprovincialis 
being greater than on Xenostrobus pulex to be 0.68 (rela-
tive to the null expectation of 0.5 given no difference in 
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probabilities), even though the 95% posterior interval for X. 
pulex is completely contained within the 95% interval for 
Mytilus galloprovincialis (Fig. 3). In addition, we estimate 
the probability of the attack rate on X. pulex being greater 
than on Austrolittorina antipodum to be 0.80. Probability 
estimates such as these are unavailable from the bootstrap 
samples.

Figure 3 also illustrates an additional utility of modeling 
the three components of the attack rates estimator—the 
abundances, handling times, and feeding ratios—explic-
itly, permitting the decomposition of their contributions to 
the variation of inferred attack rate estimates. For example, 
while the interspecific variation observed in handling times 
spans less than two orders of magnitude, the interspecific 
variation in feeding ratios and prey abundances each span 
more than four orders of magnitude (Fig. 3). Hence the 

latter two components contributed more to the interspecific 
variation seen in the estimated attack rates than did vari-
ation in handling times. That said, nearly all of the inter-
specific variation in feeding ratios was driven by the two 
most commonly observed species, Xenostrobus pulex and 
Chamaesipho columna (Fig. 3). Thus, for most prey spe-
cies, interspecific variation in the attack rates may be 
inferred to have been driven primarily by variation in their 
abundances.

The partitioning of the predator observations into 
eight body size groups reveals a generally positive rela-
tionships between a whelk’s body size and its attack 
rate on both of Haustrum’s two primary prey species 
(Fig. 4). The point estimates for the allometric slopes of 
these intraspecific relationships were 0.068 and 0.256 
for C. columna and X. pulex respectively. These slopes 

Mytilus
galloprovincialis
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antipodum
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Radial
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varia
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columna

Austrolittorina
cincta

Epopella
plicata

10−7 10−6 10−5 10−4 10−3

Attack Rate ( ξi )

Nonparametric Bootstrap Parametric Bootstrap Bayes (c=0)

Bayes (c=0.333) Bayes (c=1)

Fig. 2  Comparison of the frequentist and Bayesian approaches to 
estimating the per capita attack rates with which Haustrum scobina 
consumed its 8 prey species. Variation in attack rate estimates is illus-
trated for each by the medians and 95% equal-tailed intervals of their 
distributions. The approaches are organized the same for each prey 
species as, from top to bottom: (1) non-parametric bootstrap (filled 
square), (2) parametric bootstrap (circle), (3–5) Bayesian procedure 

with sparsity parameters c = 0 (Haldane’s prior; triangle), 1
3
 (neutral 

prior; diamond), and 1 (Laplace’s prior; open square) respectively. 
Unlike the 95% confidence intervals for the bootstrap procedures 
which often span zero (=10−7 for graphical convenience), the 95% 
posterior intervals of the Bayesian method indicate the regions where 
attack rates lie with 95% probability. A color version of this figure is 
available online
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belie substantial variation surrounding each size group’s 
median attack rates on the two prey species. Thus, while 
the probability that the attack rate of the largest whelk 
group (17–28 mm) was greater than the corresponding 
attack rate of the smallest group (6–10 mm) on X. pulex 
was 0.89, it was only 0.60 for their attack rates on C. 
columna (versus the null expectation of 0.5).

Discussion

Effort devoted to estimating the strengths of species inter-
actions has centered on obtaining point estimates, leav-
ing the characterization of estimation uncertainty largely 

unconsidered. This shortcoming reflects not only the logisti-
cal difficulty of quantifying interaction strengths in nature’s 
species-rich communities, but is also a consequence of the 
still nascent integration of the mathematical and statisti-
cal methods available to food web ecologists. The fitting 
of deterministic mathematical models to data requires that 
they be formulated as stochastic statistical models whose 
constants—like the per capita attack rates considered here—
be treated as unknown parameters to be estimated. For the 
observational estimator of Novak and Wootton (2008) the 
unknown attack rate parameters of interest are functions 
of other unknown parameters that must themselves be esti-
mated. Uncertainty in attack rate estimates thus reflects 
the contributions of both the deterministic and stochastic 
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variation of these component parameters. The propagation 
of both such forms of variation is inherent to all other exper-
imental and observational approaches as well.

Our case study serves to illustrate how the explicit mod-
eling of the components that go into estimating attack 
rates using the observational approach (i.e. feeding ratios, 

Chamaesipho columna Xenostrobus pulex
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Fig. 4  Deterministic variation in per capita attack rates due to preda-
tor body size for the two prey species consumed by Haustrum sco-
bina most frequently. Points indicate posterior medians and violin 
widths reflect posterior probabilities of the attack rate magnitudes. 
Predator individuals were split into body mass size classes of roughly 

equally-numbered counts (Table S2) with class median body weights 
(W, total wet weight in grams) estimated on the basis of each whelk’s 
shell length (L, in mm) (W = 1.214× 10−4 × L

3.210, from Novak 
(2013))

Table 1  Summary statistics for 
the datasets we use to estimate 
the per capita attack rates with 
which the intertidal predator 
Haustrum scobina fed on its 
eight prey species

“Feeding observations” indicates the total frequency with which predator individuals were observed to 
be feeding on each prey species across all feeding surveys. “Abundance zeros” indicates the number of 
zeros recorded in the 30 quadrat-based community surveys of prey species’ abundances. “Handling-time 
experiments” indicates the number of laboratory experiment trials that were used to estimate handling time 
regression coefficients for each prey species

Prey species Feeding observations Abundance zeros Handling-time experiments

Chamaesipho columna 265 0 6

Xenostrobus pulex 185 0 52

Austrolittorina antipodum 3 2 0

Austrolittorina cincta 2 0 46

Epopella plicata 2 0 1

Mytilus galloprovincialis 1 24 15

Notoacmea Radialspokes 1 5 66

Risellopsis varia 1 3 68

Not feeding 1629

Total surveyed 2089
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handling times, and prey abundances) provides insight 
into the drivers of variation in the attack rates among prey 
species. It is worth highlighting, however, that the attack 
rate posterior distributions that we estimate here represent 
population-level uncertainty (i.e. uncertainty in the overall 
attack rates) rather than intraspecific variation in the diets 
of individuals. Thus the wide posterior interval for Mytilus 
galloprovincialis, for example, means that there is a high 
degree of overall uncertainty about the attack rate on this 
species, rather than being a reflection of the individual spe-
cialization that many generalist predators, including whelk 
species, are known to exhibit (Bolnick et al. 2003).

Nevertheless, just as for interspecific comparisons of 
variation, insight into the species-specific uncertainty is 
also possible by the partitioning of its components (which 
combine additively on the logarithmic scale). Thus for prey 
species like Mytilus that occur infrequently in feeding sur-
veys (all prey species except Chamaesipho columna and 
Xenostrobus pulex, Table 1), the largest source of uncer-
tainty comes from the estimation of the feeding ratios 
(Fig. 3). Additional feeding surveys would therefore pro-
vide the most important data for better constraining this 
stochastic source of uncertainty. In contrast, a simple way 
to obtain further insight into potential additional determin-
istic drivers of species-specific variation is to apply the esti-
mation approach to subsets of the data as in Fig. 4. In our 
case study, the point estimates for the allometric slopes of 
the intraspecific relationships between body size and attack 
rate are both far lower than predicted by theory for the 
dependence of a specialist predator’s interspecific attack 
rates on predator body size (Rall et al. 2012), possibly sug-
gesting size-dependent changes in prey preferences.

Advantages of the Bayesian approach

Unlike frequentist methods, Bayesian methods offer a rela-
tively straightforward way to estimate parameters that are 
functions of other parameters using multiple sources of 
information. Bayesian methods also permit a more natural 
interpretation of the uncertainty that accompanies param-
eter estimates and provide a complete characterization of 
this uncertainty in the form of posterior probability dis-
tributions; frequentist methods provide the moments and 
intervals of distributions whose interpretation is arguably 
less intuitive (Clark 2005). In our case study, we are able 
to infer the probability of the attack rate on Mytilus gal-
loprovincialis being greater than on Xenostrobus pulex, and 
so on.

In the context of food webs and predator–prey inter-
actions, this complete probabilistic characterization of 
uncertainty regarding observational interaction strength 
estimates opens the door for probabilistic predictions of 
species effects and population dynamics (Calder et al. 

2003; Yeakel et al. 2011; Koslicki and Novak 2016). This 
stands in contrast to the typical use of arbitrarily chosen 
interaction strength ranges in stochastic simulations and 
numerical sensitivity analyses (Yodzis 1988; Novak et al. 
2011). An alternative choice to use bootstrapped (frequen-
tist) confidence intervals to inform predictions could lead 
to additional problems when lower interval bounds extend 
to zero for prey species that are rarely found in a predator’s 
diet. First, draws of zeros would amount to the outright 
removal of the predator–prey interaction and could lead to 
biased predictions through the underestimation of food web 
complexity (Poisot et al. 2016). Second, as evidenced by 
Haustrum scobina’s feeding on Mytilus galloprovincialis 
(Fig. 2), prey species whose attack rate confidence inter-
vals extend to zero may in fact experience very high per 
capita attack rates on average. Treating these interactions as 
potentially absent would fail to identify strong interactions 
that are rarely observed only because of strong top-down 
control of the prey populations’ sizes, for example. Such 
issues do not occur in the Bayesian framework where the 
Dirichlet prior distribution is conjugate for the multinomial 
likelihood, thereby producing a Dirichlet posterior from 
which MCMC samples of zero cannot occur.

Considerations and implications

Bayesian methods offer a powerful tool, but they should 
not be applied without careful consideration of the prior 
distribution. The choice of ‘non-informative’ (objec-
tive) priors is particularly important when data are sparse 
(Van Dongen 2006). It follows that, for rarely observed 
prey species, different prior specifications lead to different 
point estimates of the per capita attack rates (Figs. 1, 2). 
That is, while priors with concentration parameters c > 1

3
 

(e.g., Laplace’s prior) will produce higher attack rate point 
estimates the less frequently a prey species is observed in 
the predator’s diet, priors with concentration parameters 
c < 1

3
 (e.g., Haldane’s prior) will produce lower attack 

rate point estimates the less frequently a prey species is 
observed in the predator’s diet (see also Fig. S2). The bio-
logical implication of choosing to use one such prior over 
another is that this choice can alter the relative frequency 
of weak and strong interactions. Thus, the choice of pri-
ors can alter inferences of population dynamics and food 
web stability (Allesina and Tang 2012). These considera-
tions are avoided only when all prey occur frequently in a 
predator’s diet (see Xenostrobus pulex and Chamaesipho 
columna in Fig. 2). In such cases, the large sample sizes 
mean that the likelihood overwhelms the prior regardless 
of its information content such that Bayesian and frequen-
tist estimates are similar.

The use of the neutral prior produces posterior distribu-
tion median point estimates that are least influenced by the 
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prior and thus most like the point estimates of the frequen-
tist bootstrap methods (Figs. 1, 2, S2). We therefore sug-
gest that this be the preferred objective prior to use. Tuyl 
et al. (2008) argue against the use of such sparse (c < 1) 
priors for binomial parameters as they put more weight 
on extreme outcomes. For example, if Y ∼ Bin(n, p) and 
Y ∈ {0, n}, the use of sparse priors leads to inappropri-
ately narrow credible intervals. Fortunately, this problem 
is avoided in our application because all considered prey 
species (and “not feeding”) are observed at least once (i.e. 
Y ∈ {1, . . . , n− 1}). It is true that in hierarchical models, to 
which our framework is naturally extended (Appendix S4), 
Y ∈ {0, n} is more likely for any individual survey, but this 
is not an issue as inference at the survey level is typically 
not desired in the absence of additional covariates.

An influence of Bayesian prior choice also occurs in the 
estimation of prey abundances by means of a zero-inflated 
gamma likelihood model. Here the assumption that a zero-
inflated gamma is descriptive of the abundance structure of 
all prey species can lead to the inflation of per capita attack 
rate estimates for species that are ubiquitous. When spe-
cies occur in all but a few sampled quadrats, relatively lit-
tle data are available to estimate the probability of obtain-
ing a count of zero. In such situations the influence of even 
an uninformative uniform prior will be increased, result-
ing in an inflated estimate of the proportion of zeros and 
thus a reduced estimate of a species’ abundance. Attack 
rate estimates are thereby inflated because a species’ abun-
dance occurs in the denominator of the estimator (Eq. (2)). 
For our dataset, where many species were present in all 
sampled quadrats (Table 1), this inflation effect appears to 
have been weak as seen by comparing the results of the 
Bayesian models to the frequentist bootstrapping proce-
dures for which such inflation does not occur (Fig. 2); the 
probability of obtaining a value of zero during bootstrap-
ping is equal to the sample proportion of zeros in the data, 
which is zero for species that are always observed. Argu-
ably, however, this inflation effect of the prior that is inher-
ent to the use of the zero-inflated gamma in a Bayesian 
framework is appropriate because observations of species 
absences at the spatial scale of quadrats are fundamentally 
different from observations of species presences when 
no prior knowledge about the patchiness of prey species’ 
abundances is available.

Issues of prior choice aside, Bayesian methods offer a 
more complete characterization of the estimated uncer-
tainty of parameter estimates in the form of posterior prob-
ability distributions. Several metrics may be chosen to 
summarize the shapes of these distributions. For example, 
means, medians and modes are all commonly used as point 
estimates to reflect a distribution’s typical and most likely 
value. For strongly skewed distributions—such as those 
observed here (Fig. 3)—medians are a more representative 

metric of a distribution’s central tendency. Furthermore, 
a distribution’s median, unlike its mean, will always fall 
within the equal-tailed interval that is typically used to 
describe the variation surrounding the distribution’s esti-
mated central tendency. Of course, point estimates provide 
little information on a distribution’s shape. Confidence 
or credible intervals provide more such information with 
which to characterize parameter variation. The typical met-
rics for these intervals are equal-tailed, but for posterior 
distributions the highest posterior density (HPD) interval 
may also be useful (Gelman et al. 2013). While intervals 
characterized by highest posterior density are more resist-
ant to distribution skew and will always include the dis-
tribution’s mode, equal-tailed intervals are invariant under 
monotone transformations, making them easier to interpret 
after log-transformation. Log-transformation is frequently 
necessary in the context of interaction strengths given the 
wide range of values that the community-wide strengths of 
species interactions typically exhibit (Wootton and Emmer-
son 2005). Ultimately, the entire joint posterior distribution 
should be presented whenever possible.

Conclusion

While many ecological processes can be described in 
purely mathematical terms, mathematical models are 
often most useful when they are linked with real data 
(Codling and Dumbrell 2012). Linking models with 
data is necessary to validate and compare models, and to 
parameterize them for real-world use in predicting future 
system dynamics (Bolker 2008). This has been a chal-
lenging task in the study of species rich food webs, not 
least because of the difficulty of parameter estimation in 
typical food web models and challenges with integrat-
ing data collected across multiple spatial and temporal 
scales. Statistical models of predator–prey interactions 
that consider both the deterministic and stochastic varia-
tion in data are needed to accompany the numerous math-
ematical models that have been proposed (Poisot et al. 
2015). Our work represents a step in this direction, and 
has the potential to be extended in several directions to 
address questions of optimal foraging theory, prey profit-
ability, and functional response formulations other than 
the multispecies type II response considered here (Pyke 
1984; Berger and Pericchi 1996; Novak et al. 2017).
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