Appendix S1. Algorithm for Estimating Intake Rates and Diet from Observational Data of
Foraging Sea Oitters.

The southern sea otter (Enhydra lutris nereis) is the smallest of marine mammals, and is an apex
predator in nearshore marine food webs of central California. Sea otters feed entirely on sub-tidal and
inter-tidal benthic invertebrates (Riedman & Estes 1990), making dives of up to 100m in depth and over
5 min in duration to search for and capture invertebrate prey from the benthos. Sea otters have a highly
diverse and individually variable diet (Estes et al. 1981; Ostfeld 1982; Kvitek & Oliver 1988; Estes et al.
2003). At high population densities they are capable of limiting the abundance of several of their prey
populations, including sea urchins, leading to important indirect effects such as increased abundance of
kelp (Estes & Palmisano 1974; Estes 1990). Sea otters provide a particularly good model for
investigating variation in foraging behavior because their distribution is limited to the near-shore habitat
where they are easily observed. More importantly, sea otters bring all captured prey to the surface to
handle and consume, making it possible to quantify their foraging behavior and diet directly and non-
invasively via shore-based observations. Such observations can be used to estimate species-specific
prey intake rates for individual tagged sea otters, as described below.

Observational foraging data are collected from radio-tagged sea otters following well-
established protocols (Ralls et al. 1995; Watt et al. 2000; Estes et al. 2003; Tinker et al. 2008). Field
observations are collected 7 days per week throughout the study period, with teams of 1-2 observers
making systematic searches of the study areas and sequentially targeting specific animals for foraging
observations. Study animals are initially located by radio signal using standard telemetric techniques,
and then visually monitored them from shore using a 50-80X spotting scopes (Questar Inc., Isanti, MN).
Foraging bouts (defined as contiguous sequences of feeding dives made by the focal otter) typically last
1-4 hours, and data are recorded throughout the entire bout or for as many dives as possible. The
information recorded includes date and time, precise location of each dive (determined by visual
triangulation using GPS, compass and laser range-finder), duration of the subsurface dive interval (“ DT”)
and the post-dive surface interval (“ST”) for each feeding dive (in seconds), outcome of each dive (i.e.
whether or not prey was captured), species of prey captured, number and size of prey items, per-item
handling time (number of seconds required to handle and consume each item), whether or not tools
were used to handle the prey, and ambient conditions (including sea-state, wind, etc.). Prey size is
recorded as the estimated diameter of the shell or maximum body dimension (excluding appendages),
categorized into 5¢cm size-classes. For observations where prey cannot be reliably identified to species,
the items in question are assigned to the lowest possible taxonomic unit. Any items that cannot be
reliably categorized to any taxonomic level are listed as “un-identified”. Additional information
recorded by observers includes numbers of prey items that were stolen by or from the focal animal and,
in the case of females with dependent pups, the number of items that were shared with the pups.

When recording sea otter feeding behavior from shore, it is typical that a substantial proportion
of dive records (10-50%) are incomplete in some way. The most common reason for an incomplete
record is that prey type is unidentified, but in some cases the number of prey items or prey size cannot
be reliably recorded. A common approach when analyzing data sets of this nature is to simply “throw
away” all records with incomplete information and analyze just the remaining data. Such an approach
makes the generally unrecognized assumption that the sub-set of the data used for analysis are
perfectly representative of the incomplete records that were discarded. In the case of sea otter feeding
data this assumption is usually violated, often to a substantial degree, because there are a variety of
biases underlying which types of records are likely to be incomplete. In particular, dives that are far from
shore, or have very short surface times, or include very small prey types are more likely to be missed or
incomplete.



To account for these biases, we have adopted a Monte Carlo procedure that makes maximum
use of incomplete records by taking advantage of the strong correlations that exist between dive
parameters to account for the above mentioned biases while at the same time providing more robust
estimates of uncertainty in each parameter. This algorithm is described elsewhere (e.g. Tinker et al
2008, Supplementary online materials) and consists of the following 5 steps:

Step 1. Use all collected data and maximum likelihood methods to fit appropriate probability
distributions (indicated below in parentheses) to each of the following 6 parameters (or related sets of
parameters): i) probability of successful prey capture on a dive (binomial); ii) probability that prey is
identified, given that it is captured (binomial); iii) probability that captured prey is of type i, given that it
is identified (multinomial); iv) dive and surface interval durations (log-normal) for unsuccessful dives, un-
identified prey dives, and dives in which prey type i was captured; v) edible biomass for prey type i (log-
normal), or size class (negative binomial) in the case of un-identified prey, stratified by surface interval
(short, medium and long surface intervals = 1-45, 46-90, and >90 s respectively); vi) regression
parameters and residual variance (normal) from a multiple regression of number of items consumed per
dive (for prey type i) vs. dive surface interval and prey biomass (or prey size class in the case of un-
identified prey). In general, the number of items consumed per dive is an increasing function of the time
spent on the surface and a decreasing function of prey size (for most taxa, many small items or one large
item can be handled and consumed in a given period of time). Note that numbers of items consumed
per dive are not limited to integer values, as whole or partial items can be discarded, stolen or shared
with a pup and these are discounted appropriately.

Step 2. Generate “simulated feeding bouts” of sequential dives for each individual at each study site in a
manner that maintains the empirically-derived frequency distributions for each of the parameters
described in step 1, as well as the co-variances between parameters. These simulated bouts include
dives with no captured prey, and dives with captured but unidentified prey.

Step 3. For each simulated dive in which prey type is assigned as “unidentified”, assign prey size and
number of items based on the empirically-derived distributions and relationships for un-identified prey
(see step 1). Next, randomly draw a prey type from the entire observed set of identified-prey captures
for that individual having “sufficiently similar” dive and surface times, prey size values and number of
items. Sufficiently similar is defined as having dive and surface times £ 30 seconds of the simulated dive
and surface times, having the exact same size class, and having the exact same number of items in the
case of simulated dives with < 2 items, or £ 1 item in the case of simulated dives with > 2 items. If there
are no observed dives for that individual that meet these criteria, then draw from the data set for all
animals of the same sex and from the same study site. If there are still no observed dives that meet
these criteria, then sequentially broaden the data set to include both sexes, and then other study sites.

Step 4. Repeat steps 1-3 for a large number of iterations (100,000). For each iteration, the number of
bouts and dives per bout is limited to the observed sample size for each individual and study site.

Step 5 Using the resulting set of Monte Carlo simulations, summarize mean and variance in prey-specific
intake rates (g minute™) for each individual, and estimate diet composition as the proportion of total
consumed biomass accounted for by each prey type.

Note that in the special case of a data set in which all data records are complete (i.e. no
unidentified prey and no missing data fields), the point estimates for prey intake rate and diet
composition that would be calculated from a simple arithmetic summary of the raw data will be
approximately equal to the mean values generated by the Monte Carlo simulations. Assuming a large
enough sample size, the variance estimates in this special case will primarily reflect “process error” (e.g.
actual variability in prey size and numbers of items captured per dive). In the more typical case of data



sets with substantial numbers of incomplete records (including unidentified prey and other missing data
fields), the point estimates derived from a simple arithmetic summary of only the complete records will
tend to differ from mean values generated by the Monte Carlo simulations, with the magnitude of the
difference depending on the magnitude of the biases inherent in the data set (i.e. biases as to which
records were incomplete). The variance estimates generated by the Monte Carlo simulations in this case
incorporate both process error and sampling uncertainty: data sets with small sample sizes and/or a
high proportion of missing values will result in larger variance estimates and thus wider confidence
intervals around the point estimates.
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Appendix S2. Equations, program links and/or source code for all statistics or analytical algorithms reported in the text

Niche Width Statistics

We used the following equations to estimate Total Niche Width (TNW;s) and the Within-Individual Component of Niche Width (WICs):

TNW, = —E ¢;In g;
J

—
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where the elements p; describe the proportion of the jth resource category in the diet of individual i, variable p..is the proportion of all resources
used by the population that are used by individual i, and g;is the proportion of the jth resource category in the population’s niche.

Citation: equations 4, 5 and 6 in Bolnick D.I., Yang L.H., Fordyce J.A., Davis J.M. & Svanbéck R. (2002). Measuring individual-level
resource specialization. Ecology, 83, 2936-2941.

Proportion of Total Niche Width (TNWs) contributed by within individual variation (WICs / TNWs)

We used the following MATLAB function for calculating WICs / TNW:

function [PSI,PSI btstr,meanPSI,sdPSI,PSI CL,Prob gen,Prob HO,NicheW,NicheWr] = PSI boot(data,nl,n2,H0)
Function to calculate "Proportional Similarity Index" (PSI) and
Niche Width statistics (including WICs/TNWs) using bootstrap resampling
of an individual resource use matrix following the methods described in:
Bolnick, D. I., L. H. Yang, J. A. Fordyce, J. M. Davis, and R. Svanback.
2002. Measuring individual-level resource specialization.
Ecology 83:2936-2941.
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Input Arguments

data = Matrix with individuals as rows and prey types as collumns,
with each cell representing the proportion of prey type j in the
the diet of individual i

nl number of bootstrap replications

n2 = number of individuals to be sampled (with replacement) at each
bootstrap replication
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HO = Hypothesized "null" value for PSI

o\

o

Output Arguments

PSI = matrix of "raw" PSi values for each individual

PSI btstr = bootstrap mean, lower CL and upper CL for PS for individuals
meanPSI = bootstrapped mean population-level PSI wvalue

sd = standard deviation for population-level PSI value

PSI CL = lower and upper 95% bootstrap confidence limits for mean PSI (col 1)

and 95% CL for population PSI (with sample uncertainty) (col 2)
Prob gen = P value for each individual --> probability that individual
is selecting prey in proportion to pop'n frequency

Prob HO Probability that population PS value is no different than HO
NicheWr = replications of Niche Width Stats:

WICs = Within-ind component of Niche width

BICs Between-ind component of Niche width

TNWs = Total Niche Width

WICs/TNWs = WIC/Total Niche Width... note: TNW can be derived as WIC * 1/ (WIC/TNW)
NicheW = Niche Width Stats: mean (first row), std dev'n (second row),

and 95% CI (3rd and 4th rows) of:
WICs = Within-ind component of Niche width
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% BICs = Between-ind component of Niche width
% TNWs = Total Niche Width
% WICs/TNWs = WIC/Total Niche Width... note: TNW can be derived as WIC * 1/ (WIC/TNW)

o

%

o

= size(data,2); % number of prey types
I = size(data,l); % number of individuals
PSI = zeros(I,1);

PSI b = zeros(nl,I);

PSI r = zeros(nl,I);

PSI btstr = zeros(I,3);

Prob HO = zeros(nl,1);

PSi = zeros(nl,1l);

PS = zeros(n2,1);

Ind Sums = sum(data,2);
NicheWr = zeros(nl,5);
p = [1;

pp = [1;

a= [1;

y = [1;

for i =



for 3 = 1:J

terml = data(i,j)/sum(data(i,:));

term2 = sum(data(:,Jj))/sum(sum(data(:,:)));
a(j) = term2;

minpg = [minpg; min([terml term2])];

pp(i,j) = terml;
v(i,3) = data(i,j)/sum(data(:,3));

end
p(i) = sum(data(i,:))/sum(sum(data(:,:)));
PSI(i, 1) = sum(minpq);
end
for n = 1:nl
p = ] 4
pp = [1;
aq= [1:
y = [1;
dat = data (unidrnd(I,n2,1),:);
for i=1:n2
minpg = [];
for 3 = 1:J
terml = dat(i,j)/sum(dat(i,:));
term2 = sum(dat(:,3j))/sum(sum(dat(:,:)));
a(j) = term2;
minpg = [minpg; min([terml term2])];

pp(i,J) = terml;
y(i,j) = dat(i,j)/ (sum(dat(:,3))+ 1.0e-020);

end
p(i) = sum(dat(i,:))/sum(sum(dat(:,:)));
S(i,1) = sum(minpq);

end
indNW = mean((—l.*sum(pp( ;) . *log(pp(:,:)+1.0e-020),2)));
WIC = sum(p(:). ( l.*sum(pp(:,:).*log(pp(:,:)+1.0e-020),2)));
BIC = -1*(sum(p(:).*log(p(:))))-(sum(g(:)"'.*(-1.*sum(y(:,:).*log(y(:,:)+1.0e-020),1))));
TNW = -1*sum(q(:). *log(q( )+1.0e-020)) ;

NicheWr (n, :) [WIC BIC TNW WIC/TNW indNW];
[PHAT, PCL] = mle (PS);
PSi(n,1)= PHAT (1) ;
if PCL(1,1)<HO && PCL(2,1)>HO
Prob HO(n,1) = 1;
end



for 1 = 1:1I

dat?2 = [data(i,:); dat];
Gen R = cumsum(sum(dat2) ./sum(sum(dat2)));
datR = zeros(1l,J);
for ¢ = 1:Ind Sums (i)
test = rand();
j =1

while 7 <= J
if test <= Gen R(J)

datR(j) = datR(j)+1;
J = J+1;
else
Jj =3+
end
end
end
minpg = [];
minpgR = [];
for j = 1:J
termR = datR(1,J)/sum(datR(1,:));

terml = dat2(1,3j)/sum(dat2(1,:));

term2 = sum(dat2(:,J))/sum(sum(dat2(:,:)));
minpg = [minpg; min([terml term2])]; $%$#ok<*AGROW>
minpgR = [minpgR; min([termR term2])];
end
PSI b(n,i) = sum(minpq);
if sum(minpgR)<=sum (minpqg)
PSI r(n,i) = 1;
end
end
end
[PHAT, PCL] = mle(PSi);

meanPSI = PHAT(1);
sdPSI = PHAT (2);

PSI CL(:,1) = PCL(:,1);
PSI CL(1,2) = prctile(PSi,2.5);
PSI CL(2,2) = prctile(PSi,97.5);
Prob HO = mean (Prob_ HO);
for 1 = 1:1

[PHAT, PCL] = mle(PSI b(:,1));

PSI btstr(i,1) = PHAT(1);



PSI btstr(i,2) = PCL(1,1);
PSI btstr(i,3) = PCL(2,1);
end
Prob gen = mean(PSI r)';

NicheW(1l,:) = mean (NicheWr(:,:));
NicheW(2,:) = std(NicheWr(:,:));
NicheW(3,:) = prctile(NicheWr(:,:),2.5);
NicheW (4, :) = prctile(NicheWr(:,:),97.5);

Average Density of Connections/Pairwise diet dissimilarity index (E)

We used DIETA to compute E (https://webspace.utexas.edu/dib73/TheBolnickLab/Programs/Programs.html)

Nestedness (NODF)

We used program ANINHADO to compute nestedness (www.guimaraes.bio.br)

Modularity (M)

We used program NETCARTO, kindly provided by Roger Guimera.

Weighted nestedness (WNODF)

We used the following Matlab script for calculating WNODF:

% the r matrix has individuals in the rows and the resources in the columns

matrix=r;
row=size(r,1l); % number of rows (individuals)
col=size(r,2); % number of columns (resources)

%% Creating the proportion matrix

)

N=sum (matrix'); % sums the marginal totals of rows

for i=l:row
for j=l:col
matrix (i, j)=matrix(i,j)/N(i); % defines proportion of each cell in relation to
the marginal total of the row

o



end
end

%% Sorting the matrix by resource's strength

Q

sum_resource=sum(matrix); %
matrix2=matrix; % auxiliary matrix
matrix2 (row+l, :)=sum_ resource; %

degree=zeros (row+l, 1) ;

for i=l:row
for j=l:col
if matrix (i, 3)>0

degree (i, l)=degree (i, 1)+

end
end
end
matrix2 (:,col+l)=degree; S

matrix2=sortrows (matrix2, - (col+l));
matrix2=matrix2';
matrix2=sortrows (matrix2, - (row+l));
matrix2=matrix2"';
matrix=matrix2 (l:row, l:col);
%% Computing WNODF

nrow=zeros (row) ;
ncol=zeros (col);

1; % counts the number of
% (degree of the row

adds the degree of the rows in the

Q

% sorts the matrix by the

[

% sorts the matrix by the

% how much of the columns can be predicted by rows

o)

degreer=matrix2 (:,col+l); %

for i=l:row-1
for j=2:row

degrees of the rows

defines the marginal totals to columns

non-zeroed

i)

end column

decreasing

decreasing

adds the marginal totals to columns in the end row of the matrix

columns of the row i

of the matrix
of degrees of rows

of marginal totals of the

% 1f the rows with lower degrees have subsets of non-zeroed columns

% comparing to the higher degree rows,

and if the values are subsets

columns



% of the higher degree rows, it is counted 1 to compute the "nrow"
% value between rows i and j

if degreer (i, l)>degreer(j,1)
count=0;
for k=1l:col
if matrix (i, k) >0
if matrix(j, k)>0
if matrix (i, k)>matrix(j, k)
count=count+1;
end
end
end
end

nrow (i, j)=count/degreer (j) ;

end
end
end

nrow=100.*nrow;

[

% how much of the rows can be predicted by columns
degreec=zeros(col,1);

o\

if the columns with lower degrees have subsets of non-zeroed rows
comparing to the higher degree columns, and if the values are subsets
of the higher degree columns, it is counted 1 to compute the "ncol"
value between columns i and j

o oP

o

for i=l:row
for j=l:col
if matrix(i,j)>0 it % counts the number of non-zeroed rows of the column j (degree of the column 7j)
degreec (j,1l)=degreec(j, 1) +1;
end
end
end



for i=l:col-1
for j=2:col
if degreec(i,l)>degreec(j, 1)
count=0;
for k=l:row
if matrix(k,1i)>0
if matrix(k,3j)>0
if matrix(k,i)>matrix(k,Jj)
count=count+1;
end
end
end
end

ncol (i, j)=count/degreec(j) ;

end
end
end
ncol=100.*ncol;

WNODF Row=sum(nrow(:)); % sums the "nrow" matrix
R=(row* (row=1))/2;
WNODF_ROW=(WNODF_ROW)/R; $ calculates WNODF value to the rows

WNODF _Col=sum(ncol(:)); % sums the "ncol" matrix
C=(col* (col-1))/2;
WNODF_Col=(WNODF Col)/C; % calculates WNODF value to the columns

Weighted Clustering coefficient (WCC)

We used the following Matlab script to calculate WCC

%$100410 - metric for 2 measures of clustering
each input matrix has individuals in the rows and the resources in the
% columnns

o\°

[

A=importdata('filename.txt'); % imports the file with input matrices filenames



Nnets=size(A,1); % define the number of nets
output=zeros (Nnets, 1) ;

for net=1:Nnets
name=A (net, 1) ;
r=dlmread (name{l,1});

number of rows (individuals)
number of columns (resources)

o

row=size(r,1);
col=size(r,2);

o°

%binary clustering coefficients for individuals

%4-paths
paths4=0;
pathc4=0;

for i=l:row %1 %$looks for the 4-paths in the matrix
for j=l:col SA (1)
if r(i,3)>0
for k=l:row %2
if k~=1 && r(k,3)>0
for 1=1:col %C (3)
if 1~=7 && r(k,1)>0
for m=1l:row %(4)
if m~=1i && m~=k && r(m,1)>0 ¢ with 4 linked nodes we have one 4-path
SUMs=r (i,j)+r(k,j)+r(k,1l)+r(m,1);
SUMs=SUMs/4; % weighted clustering coefficient of 4-paths
paths4=paths4+SUMs;

count=0;
for n=1:col
if n~=3 && n~=1 && r(m,n)>0 && r(i,n)>0 % counts the 4-paths
that close
SUMc=r (i,j)+r(k,j)+tr(k,l)+r(m,l)+r(m,n)+r(i,n);
count=count+1;



end
end
if count>0

count=count*6; % considers all focal nodes in the closed 4-path
pathcd=pathc4+ (SUMc/count); weighted clustering coefficient of

closed 4-paths

end
end
end
end
end
end
end
end
end
end

output (net)=pathcd4/paths4 $ WCC values of the read matrices, in the same order of filename.txt

end

Fractional Diet Composition Analysis (FDCA)

We used the following MATLAB script to generate binary matrices using Fractional diet composition analysis:

function [templ=sliceoff (r,cutoff)
% the input matrix has individuals in the rows and the resources in the columns

oe

row=size (r,1); number of rows (individuals)
col=size(r,2); % number of columns (resources)
% Slicing off the weighted matrix to generate binary matrices
let's remove all resources the sum less or equal the cutoff

o

temp=r; % defines a temporary matrix (temp) equals the input matrix

for i=l:row
SUM=0; % sums of diet percentage
templ=temp(i,:); % auxiliary to diet of animal i
[maxVal maxInd]=max (templ); % defines the maximum percentage of anima 1 diet

and its

columns index



o\°

if the sum of diet percentages is lower than the cutoff and if we didn't
run all the animal diet, it defines the next maximum value of diet
percentage and its index, and sums to the diet of animal i until the
cutoff
while (SUM < cutoff) && (size(templ,2) > 0)
if SUM < cutoff
SUM = SUM + maxVal;
temp (1, maxInd)=1; % changes to 1 the maximum values that enters in the diet cutoff
templ (maxInd)=0;
[maxVal maxInd]=max (templ) ;
end
end
for j=l:col
if temp (i, j)<1
temp (i,j)=0; % changes to 0 all the values that don't enter in the diet cutoff
end
end

o oo

oe

end

temp (:, find (sum(abs (temp)) == 0))=[]; % removes zeroed columns



Appendix S3 Alternative explanations for dietary differences between SNI and MON/PBL.

The lack of replicate low-density sites limits the strength of our inference regarding the factor(s)
driving lower levels of diet diversity and specialization at San Nicolas Island (SNI) than at the two high-
density mainland sites. The most likely alternative explanations include unconsidered environmental
variables affecting prey availability (e.g., latitudinal differences between sites, with SNI being the
southern-most), differences between sites in the degree of interspecific competition, and a “founder
effect”, whereby animals initially trans-located to SNI from the mainland were a non-random sample of
individuals with unusually low level of individual-level variation in prey preferences. The interpretation
of our results must be accompanied by this caveat. However, several lines of evidence argue against
these alternative explanations and are more consistent with our hypothesis that across-site differences
in individual specialization are driven by density-mediated behavioral responses.

An alternative explanation relying on latitudinal or site-specific differences in prey availability
would predict that diets at SNI are less diverse because there is a lower abundance or diversity of
available prey. This prediction is inconsistent with previously published subtidal community surveys
which indicate that sea otter prey (both preferred and non-preferred types) are more abundant at SNI
than at several central California sites (Tinker et al. 2008), and that the Channel Islands support a higher
diversity of benthic invertebrates in general relative to central California (Blanchette et al. 2006).

Variation in interspecific competition could also conceivably contribute to variation in diet
diversity, with stronger niche width constraints expected in areas with stronger interspecific
competition. Sea otters at SNI do have more potential inter-specific competitors than do otters at MON
or PBL, with both sheephead fish and lobsters (both of which are sea urchin predators) occurring in
southern California but not in central California. Cowen (1983) has shown experimentally that
sheephead can have a limiting influence on sea urchins at San Nicolas Island. However, this effect
occurred patchily and much of the surrounding benthos remained urchin-dominated (Cowen, 1983).
Furthermore, a 31-year data set on sub-tidal invertebrate abundance at SNI (USGS, unpublished data),
which includes the time period prior to the arrival of sea otters, indicates that urchin populations remain
much more abundant than at mainland sites (Tinker et al. 2008). Thus, as for sea otter populations in
general (Estes et al. 2003), the influence of inter-specific competition for resources is likely to be minor
relative to intra-specific competition .It therefore seems unlikely that sea otter diet diversity at SNI is
strongly affected by interspecific competition, although there are insufficient data on multi-species
interactions to entirely rule out this possibility.

For a founder effect to have occurred requires that all trans-located individuals happened to
specialize on a single prey type (red urchins), and that this specialization has been passed on to
subsequent offspring matrilineally (Estes et al. 2003). If this were the case, one would predict that
dietary observations made immediately after the translocation (i.e. in the late 1980’s) would also testify
to low diet diversity and a lack of individual variation in the population. In contrast, Bentall (2005)
reports that foraging observations recorded at SNI between 1988-1990 indicated a higher degree of diet
diversity (Shannon-Weaver Index: H = 1.9) than exhibited by sea otters in the 2000’s (H = 1.6, this study).
In 1988-1990, individuals also included “sub-optimal” species, such as sand crabs, that were not
observed in the diets of individuals in the 2000’s (Bentall 2005). Moreover, the single original founder
animal that was still alive and included our current data set was actually found to have the most diverse
individual diet of any of the SNI study animals (Tinker et al. 2008). This suggests that she has retained
foraging behaviors acquired prior to the translocation and thereby maintains a diet dissimilar to the
more homogenous diets of the descendent population.



Finally, the strongest line of evidence running counter to alternative, density-independent
explanations is provided by two historical data sets from central California recorded shortly after sea
otters had re-colonized and were still at very low density. The data of Estes et al., (1981) were collected
in 1977 from a site within 40 km of PBL, while the data from Ostfeld (1982) were collected in 1975 from
a site within 35 km of MON). Neither data set provides individual-level information. Nevertheless, the
population-level diet composition at these low-density sites in the 1970’s were remarkably similar to
that observed in our 2003-05 data from SNI in that all exhibit strongly skewed distributions, are
relatively species poor, and are dominated by urchins (primarily red urchins, Strongylocentrotus
franciscanus), unlike the two modern high-density sites (Figure S3). We believe this contrast provides
compelling evidence that the diets recorded at SNI are representative of what sea otter diets were like
at the PBL and MON when otter densities were lower and competition between individuals was weaker.
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Table S1. List of 75 prey species (or higher taxa) consumed by sea otters over the course of the
study. Because it was often difficult to distinguish taxonomically and/or morphologically similar

species from a distance, all prey were grouped into 14 functional groups (referred to as “prey

types” in the text).

Functional Group

Prey Common Name

Latin Name

urchin red urchin Srongylocentrotus fransicanus
purple urchin Srongylocentrotus purpuratus
Cancer crab Pacific rock crab Cancer antennarius
Dungeness crab Cancer magister
red rock crab Cancer productus
Cancer crab, un-ID Cancer sp.
kelp crab northern kelp crab Pugettia productus
graceful kelp crab Pugettia gracilis
sand crab spiny mole crab Blepharipoda occidentalis
Pacific sand crab Emerita analoga
mussel horse mussel Modiolus modiolus
california mussel Mytilus californianus
bay mussel Mytilus trossulus
mussel, un-ID
clam Nuttall's cockle Clinocarduim nuttallii
giant rock scallop Crassodoma gigantea

sunset clam

Gari californica

Macoma clam Macoma spp.
surf clam Mactromeris spp.
softshell clam Mya arenaria
geoduck clam Panopea abrupta

scallop, un-ID
rock jingle

littleneck clam

Pectinidae spp. or Serripes spp.
Pododesmus macroschisma

Leucoma staminea



Functional Group Prey Common Name  Latin Name
(clam, con’t) washington clam Saxidomus nuttalli

razor clam Sliqua patula
jackknife clam Taegelus californianus
tellin clam Tellina spp.
Pismo clam Tivela stultorum
gaper clam Tresus nuttalii
rough piddock Zirfaea pilspryi
clam, un-ID

snail top snail Calliostoma spp.
wavy turban snail Megastraea undosa
Nassa snail Nassa fossatus
moon snail Pollinices sp.
brown turban snail Chlorostoma brunnea
Monterey turban snail ~ Chlorostoma montereyi
turban snail, un-ID Turbinidae
snail, un-ID

abalone black abalone Haliotis cracherodii
red abalone Haliotis rufescens
abalone, un-ID

sea star blood star Henricia sp.
brittle star Ophiuroidea
bat star Patiria miniata
ochre star Pisaster ochraceus
sunflower star Pychnopodia helianthoides
sea star, un-ID

worm pile worm Nereis sp.
polychaete, un-ID Polychaeta
peanut worm Spunculus nudus
fat innkeeper worm Urechis caupo

worm, un-ID



Functional Group

Prey Common Name

Latin Name

small invertebrates

(rocky benthos/kelp)

sand dollar
octopus

lobster

acorn barnacle
coraline algae
gumboot chiton
red sea cucumber
isopod

Katy chiton

owl limpet
mossy chiton
nudibranch
gooseneck barnacle
chiton, un-ID
Stenoplax chiton
stalked tunicate
orange puftball
sponge

lined chiton

sand dollar
octopus

spiny lobster

Balanus sp.

Corallina sp., Clathromorphum sp.

Cryptochiton stelleri
Cucumaria sp.
Idotea sp.
Katharina tunicata
Lottia gigantea
Mopalia sp.
Opisthobranchia
Pollcipes polymerus
Polyplacophora sp.
Senoplax fallax
Syela sp.

Tethya californiana

Tonicella sp.
Dendraster excentricus
Octopus sp.

Panulirus interruptus



Table S2. Two-sided Wilcoxon rank sum tests assessing whether the central point of each
distribution of rank preference correlations with no peripheral prey removed is significantly

different from zero.

All prey (pan) Shared prey (psh)

Population w p-value \% p-value
Between-module

MBA 31427.5  <0.001 19853 <0.001
PBL 87894.5  <0.001 85123 <0.001
SNL 465 <0.001 465 <0.001
Within-module

MBA 7604 <0.001 5104.5 <0.001
PBL 14952 <0.001 13503 <0.001

SNI 325 <0.001 325 <0.001



Table S3. Population-specific comparisons of within- versus between-module rank preference

correlation distributions with no peripheral prey removed using two-sided Mann-Whitney test.

All prey (pall) Shared prey (psh)
Population W p-value w p-value
MBA 21664.5 <0.001 16809.5 0.258
PBL 39884 0.076* 34000 0.189
SNI 518.5 0.016 337 0.512

* Significant under a one-sided test (p=0.038).



Table S4. Handling times for six of the most common prey types at the PBL and MON study sites. Standardized, least-squares mean

values are shown (with standard errors) after controlling for the effects of prey size class and random individual otter effects. Data are

summarized separately for “specialists” (sea otters that included the prey type in their core diets at f = 0.3) and “occasional users” (sea

otters that did not include the prey in their core diets, but that did capture and consume the prey occasionally), and the statistical

significance of the difference between these two groups is indicated by the associated F and P values from the General Linear model.

For prey types where these groups were significantly different, the % difference in handling efficiency (= handling time™) of

specialists relative to generalists is also shown.

Specialists Occasional Users Comparison % difference in

Prey type L.S. mean Std. err L.S. mean Std.err F P handling efficiency
abalone 210.0351 32.433 189.8515 26.3396 0.2334 0.6307 n.s.

Cancer crab 170.8106 5.4303 179.0545 11.1113  0.4443 0.5053 n.s.

kelp crab 88.8037 9.727 139.7506 4.1466 23.2144 0.00001 57.37024471

clam 39.6143 3.9151 59.4676 4.1248 12.1872 0.0005  50.11649834
urchin 30.3188 2.0186 36.7412 1.4163 6.7831 0.0097  21.18289642

snail 13.0867 1.0837 18.5603 2.2908 4.665 0.0325  41.82567034



Figure S1. Map of coastal California showing geographic locations of study sites, as well as the
range extent and local linear density of the southern sea otter population (based on 2010 range-

wide survey data; USGS, unpublished data).
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Figure S2. Variation in indices of Nestedness (Panels A and B) and Modularity (Panels C and D) as a function of the fraction (f) of the diet
considered, with marginal prey types excluded when <1. Error bars represent the 95% Bootstrap Confidence Intervals for the indices, calculated so
as to normalize for sample size differences among study sites as described in the Methods section. Panel A shows a comparison of Nestedness for
SNI (closed symbols) vs. PBL (open symbols); Panel B shows a comparison of Nestedness for SNI (closed symbols) vs. MON (open symbols); Panel
C shows a comparison of Modularity for SNI (closed symbols) vs. PBL (open symbols); and Panel D shows a comparison of Modularity for SNI

(closed symbols) vs. MON (open symbols).
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Figure S3. Comparison of diet composition and diversity for five sea otter populations in
California. Populations vary by population density and by geographic region. Panels on left (A,
C and E) show diet histograms recorded from low-density, recently re-colonized populations,
while panels on right (B and D) show diet histograms recorded from high-density, long-
established populations. The top two panels (A and B) show data from northern central
California (panel A data reported by Ostfeld 1982, panel B data from MON site, current study),
while the middle two panels (C and D) show data from southern central California (panel C data
reported by Estes et al. 1981, panel D data from PBL site, current study). Data for panel E were
recorded from otters in southern California at San Nicolas Island (SNI site, current study). The
frequency of prey types in the diet is measured as the relative proportion of successful dives in
which each prey type was recorded (excluding dives with un-identifiable prey), and sample sizes
indicate the number of recorded prey capture dives included in each data set.
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