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Abstract

Functional responses relate a consumer’s feeding rates to variation in its abiotic and biotic envi-
ronment, providing insight into consumer behaviour and fitness, and underpinning population
and food-web dynamics. Despite their broad relevance and long-standing history, we show here
that the types of density dependence found in classic resource- and consumer-dependent func-
tional-response models equate to strong and often untenable assumptions about the independence
of processes underlying feeding rates. We first demonstrate mathematically how to quantify non-
independence between feeding and consumer interference and between feeding on multiple
resources. We then analyse two large collections of functional-response data sets to show that
non-independence is pervasive and borne out in previously hidden forms of density dependence.
Our results provide a new lens through which to view variation in consumer feeding rates and dis-
entangle the biological underpinnings of species interactions in multi-species contexts.
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INTRODUCTION

Functional responses are a critical component in our under-
standing of consumer–resource interactions. Since the pioneer-
ing work of Holling (1959a,b, 1965), numerous researchers
have used manipulative and observational experiments to elu-
cidate the empirical ways in which varied biotic and abiotic
factors alter consumer feeding rates in diverse biological con-
texts (e.g. DeLong, 2014; Preston et al., 2018; Uiterwaal &
DeLong, 2020). In parallel, researchers have proposed a large
suite of models to characterise functional responses mathe-
matically (Abrams & Ginzburg, 2000; Jeschke et al., 2002;
Gentleman et al., 2003; Koen-Alonso, 2007; Arditi & Ginz-
burg, 2012), with emphasis increasingly being placed on the
evaluation of their statistical performance and empirical rele-
vance (Skalski & Gilliam, 2001; Jeschke et al., 2004; Novak
et al., 2017; Uiterwaal & DeLong, 2020).
Though they differ in their finer details, one assumption

that is common to virtually all functional-response models is
that feeding rates will exhibit density-dependent variation.
The agents of this density dependence provide a convenient
classification scheme: on one hand, we have ‘resource-depen-
dent’ or ‘consumer-dependent’ models (whereby a focal con-
sumer’s feeding rate is either determined by resource
abundance alone, or by the abundances of resources and con-
sumers together; Abrams & Ginzburg, 2000); on the other, we
have ‘single-resource’ versus ‘multi-resource’ models (whereby
focal consumers are assumed to be specialists feeding on a sin-
gle resource, or generalists whose feeding rates on non-focal
resources could influence their feeding rate on the focal
resource; Murdoch, 1973). For example, the well-known Hol-
ling Type II functional-response model, FðNÞ¼ aN=ð1þahNÞ,

is a single-resource-dependent model since the per capita feed-
ing rate F saturates only as a function of increasing resource
density N (Holling, 1959b). In this model, the rate of satura-
tion is determined by the ‘attack rate’ a and the ‘handling
time’ h, the latter of which imposes an ever greater cost to the
consumer as the rate with which it encounters (and captures)
resources increases with resource density.
Despite the ubiquity of density dependence in functional-re-

sponse models, the parameters that control how species densi-
ties affect variation in feeding rates are rarely themselves
considered to be explicit functions of species’ densities
(Abrams, 1982; Kéfi et al., 2012). Although the Holling Type
III model (Holling, 1959b) may be interpreted as assuming
that the attack rate is a linearly increasing function of
resource density N, it is far less common to allow handling
time to also depend on N (but see Abrams, 1990; Okuyama,
2010). And yet, while almost all resource-dependent and con-
sumer-dependent models consider feeding rate saturation to
be a function of (1) increasing resource density via handling
times and (2) increasing consumer density via conspecific
interference, neither handling times nor interference rates are
themselves considered to depend on consumer or resource
densities respectively.
Broadly speaking, density dependence of interaction-rate

parameters leads to interaction modifications (Wootton, 1993;
Adler & Morris, 1994; Goudard & Loreau, 2008) reflecting
indirect effects (Wootton, 1994; Okuyama & Bolker, 2007;
Abrams & Cortez, 2015), trait- and behaviour-mediated
effects (Beckerman et al., 1997; Peacor & Werner, 2001; Wer-
ner & Peacor, 2003; Toscano & Griffen, 2014), and other
forms of non-additivity or higher-order effects (Mayfield &
Stouffer, 2017; Letten & Stouffer, 2019; Kleinhesselink et al.,
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2019). Though these phenomena have long been recognised as
being biologically widespread (Abrams, 1983; Strauss, 1991;
Levine et al., 2017), there are multiple explanations for why
they remain under-represented in the functional-response liter-
ature and why their potential importance for consumer feed-
ing rates has not been empirically addressed. Among these
reasons are the high logistical costs associated with even the
simplest of functional-response experiments, with statistical
insight into additionally assumed parameters requiring ever
more treatment levels and greater amounts of replication
(Beck & Arnold, 1977; Bolker, 2008). Researchers are also
well-justified in wishing to avoid unnecessary increases in
model complexity that complicate mathematical analyses and
can lead to over-fit statistical models (Rissanen, 1996; Myung
et al., 2000; Burnham & Anderson, 2002). A more fundamen-
tal challenge, however, is that it is far easier to add potentially
unnecessary new terms to a model than it is to provide a bio-
logical rationale for why they should be included (Abrams,
1997; Ginzburg & Jensen, 2004; Otto & Day, 2007; Guimerà
et al., 2020). This represents a general problem for the func-
tional-response literature because it lacks a general perspective
from which to biologically motivate such terms.
To address this challenge, we provide a mathematical analy-

sis to demonstrate how these under-studied density-dependent
terms can emerge from classic consumer functional-response
models. We focus our analysis on two broadly studied scenar-
ios: First, we consider the case of multiple conspecific con-
sumer individuals foraging on a single resource species. In this
context, we derive new models that generate a spectrum of
emergent consumer-interference effects that have not been
previously described. Second, we consider the case of a single
consumer individual foraging on two different resource spe-
cies. In this context, we derive new models that generate a
spectrum of emergent effects between resource species that
have also not been previously recognised. To assess the empir-
ical relevance of these new functional-response models and
thereby motivate targeted experimental designs in the future,
we then fit them to two large collections of published func-
tional-response data representing consumer identities that
range from wolves to ciliates. Our analysis provides evidence
for the widespread prevalence of unrecognised density-depen-
dent effects in many existing functional-response experiments.

MATHEMATICAL ANALYSIS

We first show how links between the various processes that
underlie feeding rates can create novel functional forms for
feeding-rate variation, specifically when the rates of consumer
interference and/or consumption of different resources are, or
are not, independent of each other. Our analysis demonstrates
why non-independence leads directly to new functional-re-
sponse models containing ‘density dependence of interaction-
rate parameters’ (e.g. handling times that are explicit func-
tions of consumer densities). For simplicity and to better
relate to the prevailing literature, we will generally refer to
consumers as predators and resources as prey. However, we
will subsequently use our data analysis to show that the sce-
narios described apply to consumer–resource interactions
more broadly.

Single-resource consumer dependence

We first consider how interactions between conspecific preda-
tors act to change their own per capita feeding rate. One of
the simplest models that includes such interactions by allow-
ing for both resource and consumer density dependence is the
single-resource consumer-dependent Beddington–DeAngelis
functional response (Beddington, 1975; DeAngelis et al.,
1975). This model takes the form

Fki Ni,Pkð Þ¼ akiNi

1þakihkiNiþ ckPk
, (1)

where Fki is the feeding rate of predators k consuming prey i
(with dimensions of [(prey consumed per predator) per time
available]), Ni is the density of prey i available, Pk is the den-
sity of predators k, aki is the attack rate (with dimensions of
[(prey consumed per prey available) per time available]), hki is
the handling time (with dimensions [time handling per prey
consumed]) and ck is the strength of interference between
predators (with dimensions [(time interfering per time avail-
able) per predator interfering]). When Pk represents a count
rather than a density of predators, as is common in experi-
mental settings, Pk is replaced by ðPk�1Þ because a predator
individual cannot interfere with itself. Note that the 1 in the
denominator is dimensionless for the same reason that time
cancels out in the dimensions of interference strength ck. We
have also refrained from including dimensions of area or vol-
ume in aki or ck because they have no impact on our subse-
quent data analysis (but see Uiterwaal & DeLong, 2020).
A related model, the Crowley–Martin functional response

(Crowley & Martin, 1989), takes the form

Fki Ni,Pkð Þ¼ akiNi

1þakihkiNið Þ 1þ ckPkð Þ , (2)

where all parameters are defined precisely as above. Whereas
the Beddington–DeAngelis model is interpreted as characteris-
ing predators that only interfere when searching for prey, the
Crowley–Martin model is interpreted as characterising preda-
tors that interfere both when searching for and when handling
prey.
Focusing on the denominators of eqns (1) and (2), the key

mathematical difference between the Beddington–DeAngelis
and Crowley–Martin models is an additional term in the latter
that varies with the product of Ni and Pk. We could therefore
instead rewrite both models as

Fki Ni,Pkð Þ¼ akiNi

1þakihkiNiþ ckPkþ 1�ϕð ÞakihkickNiPk
, (3)

where ϕ is a dimensionless parameter that controls the
strength of this NiPk term. Written in this way, we immedi-
ately recover the Beddington–DeAngelis model when ϕ¼ 1
and the Crowley–Martin model when ϕ¼ 0.

Understanding the parameter ϕ

We can conceptualise the role of ϕ in creating density-depen-
dent functional-response parameters in various ways. For
example, we could rearrange the denominator of eqn (3) to
instead give
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Fki Ni,Pkð Þ¼ akiNi

1þakihki 1þ 1�ϕð ÞckPk½ �Niþ ckPk
, (4)

in which case the implied interpretation is that ϕ influences
the extent to which handling time hki is a function of the
abundance of interfering predators Pk. That is, hki is only
independent of interfering predators when ϕ¼ 1. One could
equivalently rearrange eqn (3) to give

Fki Ni,Pkð Þ¼ akiNi

1þakihkiNiþ ck 1þ 1�ϕð ÞakihkiNi½ �Pk
, (5)

in which case the implied interpretation is that ϕ influences the
extent to which interference strength ck is a function of the
abundance of available prey Ni. That is, ck is only independent
of available prey when ϕ¼ 1. From a phenomenological per-
spective, it is important to recognise that both viewpoints are
equally correct – as are combinations of them – as they are
mathematically identical. Stepping back a bit, this implies that
the most parsimonious role of ϕ is as an indicator that neither
prey dependence – as captured with handling time hki – nor
predator dependence – as captured with interference strength ck
– can be properly measured independent of the other.
To clarify the origin of this dependence of hki and ck on

species densities, we extend a derivation previously presented
by Crowley & Martin (1989). Rather than describe predator–-
prey functional responses phenomenologically, as formulated
above, those authors described how the observed feeding rate
Fki relates to an implicit, unmeasured interference rate Ik:

Fki Ni,Pkð Þ¼ akiNi 1�hkiFki�βkIkð Þ (6)
Ik Ni,Pkð Þ¼ αkPk 1�ϕhkiFki�βkIkð Þ: (7)

Upon algebraically solving eqns (6) and (7) for Fki, we imme-
diately obtain eqn (3) with interference strength ck ¼ αkβk. The
two new parameters are an ‘interference rate’ αk (akin to the
attack rate and with dimensions [(predator interfered per preda-
tor interfering) per time available]) and an ‘interference time’ βk
(akin to handling time and with dimensions [time interfering
per predator interfered]). The parenthetical term of each equa-
tion therefore corresponds to the proportion of total time avail-
able for attacking and the proportion of total time available for
interfering respectively. That is, consistent with the definitions
of hki and βk, time for searching in eqn (6) is reduced by time
spent handling and time spent interfering. Similarly, time avail-
able for interfering in eqn (7) is also reduced by interfering. In
contrast, whether and how time spent handling influences the
realised rate of interference is explicitly determined by the value
of ϕ. [Correction added on 20 January 2021, after first online
publication: equation 6 has been modified.]
Expressed in this way, we can shift from a generic parame-

ter ϕ and formally define ϕIkFki
as the parameter capturing

how the predator’s feeding rate Fki alters its realised conspeci-
fic interference rate Ik. As described verbally above, predators
can interfere while searching but cannot interfere while feed-
ing in the Beddington–DeAngelis model (eqn 1), implying
ϕIkFki

¼ 1. In the Crowley–Martin model (eqn 2), predators
interfere both while searching and while feeding, implying
ϕIkFki

¼ 0. Crowley & Martin (1989) referred to these as dis-
traction and distraction-free models respectively. Beyond these
two cases, note that any value of ϕIkFki

≠1 leads to the

appearance of a ‘higher-order’ term in the denominator that
involves the product of both prey and predator densities,
NiPk. Parameter ϕIkFki

causes feeding rates to decrease with
increasing NiPk whenever ϕIkFki

<1, and causes feeding rates
to increase with increasing NiPk whenever ϕIkFki

>1 (Fig. 1a).

Multi-resource dependence

We follow a similar methodology for multi-resource depen-
dence – as occurs when a single predator is feeding on two
different prey species – to measure the effect that feeding on
one prey species has on the predator’s rate of feeding on the
second prey species (and vice versa). Similar to eqns (6) and
(7), we define the feeding rates on prey i and prey j as

Fki Ni,Nj

� �¼ akiNi 1�hkiFki�ϕFkiFkj
hkjFkj

� �
(8)

Fkj Ni,Nj

� �¼ akjNj 1�ϕFkjFki
hkiFki�hkjFkj

� �
, (9)

where ϕFkiFkj
represents the extent to which feeding on j

impacts feeding on i, and ϕFkjFki
represents the extent to which

feeding on i impacts feeding on j. The attack rates aki and akj
are prey-specific versions of the attack rate defined above. The
parenthetical term of each equation corresponds to the pro-
portion of total time available for attacking i (respectively j)
after accounting for time spent handling both prey. As such,
the interpretation of the handling times hki and hkj is slightly
different than above because they only directly equate to ‘time
lost to handling’ for the prey in question; that is, time avail-
able to search for prey i decreases by hki for each prey i con-
sumed, but it decreases by ϕFkiFkj

hkj for each prey j consumed
(with similar behaviour when focusing on time available to
search for prey j). The 1 in the parentheses implies that the
predator is potentially searching for either prey; we adopt this
assumption in order to avoid adding even more parameters to
the resulting model (Supplementary Material).
With algebraic manipulation of eqns (8) and (9), we can

solve for each of the two feeding rates and obtain

Fki Ni,Nj

� �¼
akiNi 1þ 1�ϕFkiFkj

� �
akjhkjNj

h i

1þakihkiNið Þ 1þakjhkjNj

� ��ϕFkiFkj
ϕFkjFki

akihkiakjhkjNiNj

(10)

for the predator’s feeding rate on i. An equivalent expression
for the predator’s feeding rate on prey j can be obtained by
swapping all i’s for j’s and vice versa.
As was the case for predator interference, any values of

ϕFkiFkj
and ϕFkjFki

such that their product ϕFkiFkj
ϕFkjFki

≠1 lead to
the appearance of the additional ‘higher-order’ term in the
denominator of eqn (10) involving the product of both prey
densities, NiNj. For the multi-resource-dependence case, the
density of the second prey also appears in the numerator of
eqn (10). As a direct consequence, non-independence between
feeding on both prey species as captured by the parameters
ϕFkiFkj

and ϕFkjFki
can lead to density-dependent changes in

feeding of the sort expected when predators exhibit prey-
switching behaviour (Supplementary Material).
In order to better elucidate the behaviour of these expres-

sions for feeding rates, it is useful to explore three limiting
cases and the resulting forms for Fki. First, consider a scenario
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in which ϕFkiFkj
¼ 1 and ϕFkjFki

¼ 1, implying that predators
cannot search for any prey while handling either, as is likely
true for intertidal whelks that feed on sessile prey (e.g. Novak
et al., 2017). Here the dependence on the ‘other’ prey vanishes
from the numerators of both feeding-rate expressions and the
higher-order term cancels within both denominators. As a
result, we are left with the standard ‘multi-resource Holling

Type II functional response’ (Murdoch, 1973; Koen-Alonso,
2007) given by

Fki Ni,Nj

� �¼ akiNi

1þakihkiNiþakjhkjNj
: (11)

Second, consider the scenario where ϕFkiFkj
¼ 0, implying

that the feeding rate on j has no impact on the feeding rate
on i as might occur for drift-feeding fish that are unlikely to
pass up an opportunistic encounter with i even shortly after
ingesting j (e.g. Neuswanger et al., 2014). Alternatively, this
could arise whenever Fkj is effectively Type I over the range
of experienced abundances (Novak, 2010). In this scenario,
the higher-order term vanishes from the denominator in Fki

irrespective of the value of ϕFkjFki
. Moreover, the potential

dependence on Nj can be factored out since identical expres-
sions of the form 1þakjhkjNj appear in both the numerator
and denominator. Reassuringly, we are left with a single-re-
source Holling Type II functional response for Fki that is
completely independent of the abundance of prey j (Holling,
1959a;b); namely we obtain

Fki Nið Þ¼ akiNi

1þakihkiNi
: (12)

Third, consider what happens when ϕFkiFkj
¼ 1 and

ϕFkjFki
¼ 0, implying that a predator handling j cannot attack i

but a predator handling i could still attack j. This scenario
could arise when prey differ dramatically in size (e.g. Kalinkat
et al., 2011). Under these conditions, feeding on i behaves as

Fki Ni,Nj

� �¼ akiNi

1þakihkiNiþakjhkjNjþakihkiakjhkjNiNj
, (13)

which shows systematic variation for any abundance of j and
includes the higher-order term in the denominator. Compared
to the first two limiting cases, feeding Fki is lowest in this
third scenario for equivalent values of the attack rates and
handling times. This is because increased feeding Fkj on j acts
to decrease the time available for feeding on i. Delineating
values of ϕFkiFkj

and ϕFkjFki
that always lead to increased or

decreased feeding rates is more complicated than for single-re-
source consumer dependence since both rates are a combina-
tion of both parameters. Moreover, two given values of ϕFkiFkj

and ϕFkjFki
could hypothetically lead to a decrease in Fki while

still increasing the total feeding rate Fk ¼FkiþFkj (Fig. 1b).

METHODS

Data compilation

Our mathematical analysis indicates that any non-indepen-
dence between processes such as feeding and interference can
induce higher-order, non-additive terms in the denominator of
common functional-response models. We therefore aimed to
determine whether there is empirical support for such non-in-
dependence and the inclusion of the parameters ϕIkFki

, ϕFkiFkj

and ϕFkjFki
when modelling observed feeding rates. Focusing

on the two specific scenarios discussed above, we searched the
literature to obtain two different types of empirical data sets.
First, single-resource consumer-dependence data sets designed
specifically to assess consumer interference; these consisted of
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Figure 1 (a) The effect of the parameter ϕIkFki
on feeding rate Fki. We

show isoclines of constant consumption for the Holling Type II model

(H2) and the generalised resource- and consumer-dependent model

introduced here (eqn 3). Each line corresponds to PkFki≡1 with the

values of ϕIkFki
specified in the legend, and fixed values of attack rate

aki ¼ 0:2, handling time hki ¼ 0:5 and interference ck ¼ 0:25. As ϕIkFki
shifts

from 1:5 (short-dashed line) to �0:5 (dot-dashed line), more and more

consumers are required to achieve equivalent consumption. Note that

G 1ð Þ and G 0ð Þ correspond to the Beddington–DeAngelis and

Crowley–Martin models respectively. (b) The effect of the parameters

ϕFkiFkj
and ϕFkjFki

on total feeding rate Fk ¼FkiþFkj. We show isoclines of

constant consumption for the generalised multi-resource-dependent model

introduced here (eqn 10). Each line corresponds to PkFk≡1 with the

values of ϕFkiFkj
and ϕFkjFki

specified in the legend and Pk ¼ 1. Both

resources are otherwise equivalent (i.e. aki ¼ akj ¼ 0:5 and hki ¼ hkj ¼ 0:5).

When ϕFkiFkj
¼ϕFkjFki

¼ 1 (solid line), resources are perfectly substitutable;

when ϕFkiFkj
¼ϕFkjFki

¼ 0, consumers require fewer resources to achieve

equivalent feeding rates (short-dashed line); and when ϕFkiFkj
¼ 1 and

ϕFkjFki
¼ 1:3, consumers require more resources to achieve equivalent

feeding rates (dot-dashed line). Note that H2-g 1,1ð Þ corresponds to the

multi-resource Holling Type II functional response (H2-m).
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feeding rates as a function of variation in prey and predator
abundances, or parasitism rates as a function of variation in
host and parasitoid abundances (Table S1). Second, multi-re-
source-dependence data sets designed to assess the dependence
of consumer feeding rates on the availability of two alterna-
tive resources; these universally consisted of feeding rates for
single predator individuals as a function of variation in the
abundances of two prey (Table S2). When possible, we
obtained the original data from the authors. Otherwise, we
extracted (1) data points or (2) means and their associated
uncertainties from the publication in tables by hand or figures
using Graph Click (2010).

Single-resource consumer-dependent models

We considered five different functional-response models when
examining the consumer-interference data sets (Table 1): the
resource-dependent, consumer-independent Holling Type I
and Holling Type II models (Holling, 1959a;b), the resource-
and consumer-dependent Beddington–DeAngelis (Beddington,
1975; DeAngelis et al., 1975) and Crowley–Martin (Crowley
& Martin, 1989) models, and our new resource- and con-
sumer-dependent model with the additional parameter ϕIkFki

(eqn 3).

Multi-resource-dependent models

We considered four different functional-response models when
examining the multiple-resource data sets (Table 2): the Hol-
ling Type I functional responses that arise when hki ¼ hkj ¼ 0,
the Holling Type II functional responses that arise when
ϕFkiFkj

¼ϕFkjFki
¼ 0 (Holling, 1959a;b), the multi-resource Type

II functional responses that arise when ϕFkiFkj
¼ϕFkjFki

¼ 1
(Murdoch, 1973) and our generalised multi-resource Type II
functional responses that emerge when both ϕFkiFkj

and ϕFkjFki

are free parameters (eqn 10).

Biological and statistical constraints to the parameters

There is a particularly important detail to consider when fit-
ting eqns (3) and (10) to data. In the preceding mathematical

descriptions, we primarily focused on examples in which the
various parameters ϕIkFki

, ϕFkiFkj
and ϕFkjFki

took values of 0 or
1. We did so to build on the intuition behind the distraction
and distraction-free interpretations of predator behaviour
(Crowley & Martin, 1989), and to relate our generalised mod-
els to pre-existing functional-response models. This notwith-
standing, the values these parameters may take on are not
restricted to this 0 to 1 region. Instead, their values depend on
the extent to which they generate biologically plausible (or
implausible) feeding-rate behaviour. This may be understood
as follows.
When considering the processes involved, the most funda-

mental constraints are that the rate of predator k feeding on
prey i (Fki), the rate of predator k feeding on prey j (Fkj) and
interference rate of predator k (Ik) in eqns (6–9) must each
remain greater than or equal to 0. This means, for example,
that the statistically best-fit value of ϕIkFki

for a given single-
resource consumer-dependence data set could be ϕIkFki

<0 if
βk were sufficiently large, or could be ϕIkFki

>0 if hki were suf-
ficiently small. This contrasts to parameters such as handling
time that are directly constrained by their explicit interpreta-
tion (e.g. the time associated with handling a prey cannot be
negative). Similar arguments hold for ϕFkiFkj

and ϕFkjFki
in the

context of multiple resources. While an absence of constraints
on ϕIkFki

, ϕFkiFkj
and ϕFkjFki

does not impact the mathematical
derivation performed above, it does influence their statistical
inference as outlined below. It also impacts a model’s ability
to generate biologically plausible ‘out-of-sample’ predictions.
That is, a large positive value of ϕIkFki

may be consistent with
a given data set while also predicting implausible, negative
interference rates for larger-than-observed consumer or
resource abundances (see also Novak & Stouffer, 2020).

Parameter inference

Given each empirical data set, we determined the best-fit
parameter values for each functional-response model using a
two-step procedure. In the first step, we used the global-optimi-
sation algorithm sbplx from the nloptr package (Johnson, 2020)
in R (R Core Team, 2020) to obtain an estimate of the maxi-
mum-likelihood parameter values. In the second step, we
passed the optimal parameter values identified by sbplx to the
mle2 function from the bbmle package (Bolker & R Develop-
ment Core Team, 2020) to search for local improvements and
assess model convergence. The likelihood being optimised was
determined by the data set’s experimental design (Supplemen-
tary Material), and all handling times, attack rates and interfer-
ence strengths were constrained to be positive. We allowed the
values of ϕIkFki

, ϕFkiFkj
and ϕFkjFki

to vary freely as long as pre-
dicted mean feeding rates remained greater than or equal to 0.
When a fit converged (i.e. when the maximum-likelihood

parameter values were identified), we first attempted to esti-
mate parameter uncertainty via their 68% profile confidence
intervals – which roughly correspond to �1 standard error –
using the confint function from bbmle. On occasion, this
approach failed because, although the optimisation converged,
the likelihood surface was nearly flat around the optimum.
This is usually indicative of the model being over-parame-
terised (Gill & King, 2004), the occurrence of which was not

Table 1 The five models we considered describing single-resource con-

sumer-dependent consumption.

Name Abbreviation

Per capita

consumption rate, Fki Parameters

Holling Type I H1 akiNi 1

Holling Type II H2 akiNi

1þakihkiNi
2

Beddington–
DeAngelis

BD akiNi

1þakihkiNiþckPk
3

Crowley–Martin CM akiNi

1þakihkiNið Þ 1þckPkð Þ 3

Generalised

consumer

dependence

G akiNi

1þakihkiNið Þ 1þckPkð Þ�ϕIkFki
akihkickNiPk

4

These expressions for consumer per capita consumption rates correspond

to the instantaneous consumption rate for both replacement and non-re-

placement studies.
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altogether surprising in our context since none of the experi-
ments were designed for the purpose of fitting our most com-
plex functional-response models. In these instances, we used
the quadratic approximation of the parameter standard errors
provided directly by mle2 as our estimate of parameter uncer-
tainty.
When we could only obtain a data set as means and associ-

ated uncertainties, we simulated 250 parametrically boot-
strapped data sets with a sample size equivalent to that of the
original data set and then inferred the best-fit parameter val-
ues of each of these (Supplementary Material). We then per-
formed the same two-step parameter fitting process separately
for each of these simulated data sets. We treated each param-
eter’s median value across these 250 separate fits as its point
estimate. As an estimate of its uncertainty, we used the central
68% interval of the 250 values as this corresponds to �1 stan-
dard deviation for a normal distribution.

Model assessment and model comparison

After fitting the parameters of the various functional-response
models, we focused on two primary ways in which the data
could lend support to the processes captured by the parame-
ters ϕIkFki

, ϕFkiFkj
and/or ϕFkjFki

. The first came from comparing
AIC (Akaike information criterion) across the various candi-
date models. Smaller values of AIC provide an indication of a
better out-of-sample prediction error conditional on model
complexity. The second was provided by our aforementioned
ability to infer maximum-likelihood values for these parame-
ters that differed from values of 0 or 1 with well-defined, and
relatively small, estimates of uncertainty. Even when a model
is not the most parsimonious among a set of alternative mod-
els, well-defined estimates of parameter uncertainty are still a
good indication that it provides a robust description of the
data-generating process (Beck & Arnold, 1977; Reichert &
Omlin, 1997; Gill & King, 2004).

RESULTS

Consumer interference

We obtained 77 single-resource consumer-dependence data
sets with which to infer the effect of feeding on consumer
interference (Table S1). This included 61 data sets with preda-
tor consumers and 17 data sets with parasitoid consumers. In
total, we obtained 44 data sets in the form of raw data and 33
data sets in the form of means and associated uncertainties.

On average, the data sets consisted of 120 replicate feeding
observations (min: 10, max: 528, median: 80).
As judged by AIC, our generalised consumer-dependent

model including ϕIkFki
(eqn 3) was ranked first for 42 (55%)

data sets and tied for first (i.e. was within 2 AIC units) for an
additional 24 (31%) data sets (Fig. 2). We obtained qualita-
tively similar results using the alternative information criteria
AICc and BIC (Fig. S1). Maximum-likelihood point estimates
of ϕIkFki

(i.e. the effect of feeding on interference) varied con-
siderably across the data sets (Fig. 2). Well over half (47 out
of 77) of the data sets provided point estimates that were less
than or equal to 1, implying that handling times and/or con-
sumer interference increased as the product of resource and
consumer abundances increased. The uncertainties of these
ϕIkFki

point estimates overlapped only the Beddington–-
DeAngelis model (ϕIkFki

¼ 1) for 15 data sets, overlapped only
the Crowley–Martin model (ϕIkFki

¼ 0) for 11 data sets, and
overlapped both models for 23 data sets. This overlap was lar-
gely consistent with instances where the generalised model
was judged equivalent to simpler models based on AIC. There
were 28 data sets with uncertainties that were not consistent
with any pre-existing model: four data sets fell entirely in the
region ϕIkFki

<0, 10 data sets fell exclusively between the two
models (e.g. consistent with ‘partial’ distraction of consumers)
and 14 data sets fell entirely in the region ϕIkFki

>1. Overall,
the uncertainties of only 34 data sets (43%) were consistent
with the idea that interference and feeding were independent
of each other (i.e. ϕIkFki

≈0).

Multiple resources

We obtained 30 multi-resource-dependence data sets with
which to infer the effect that feeding on one prey has on feed-
ing on another and vice versa (Table S2). The consumers of
all of these were predators. This included 15 data sets in the
form of raw data and 15 data sets in the form of means and
associated uncertainties. On average, the data sets consisted of
135 replicate pairs of feeding observations (min: 37, max: 290,
median: 116).
As judged by AIC, our generalised multi-resource Holling

Type II model including both ϕFkiFkj
and ϕFkjFki

(eqn 10) was
ranked first for 20 (67%) multiple-resource data sets and tied
for first for an additional one (3%) data set (Fig. 3). We
obtained qualitatively similar results using the alternative
information criteria AICc and BIC (Fig. S2). Maximum-likeli-
hood point estimates of ϕFkiFkj

and ϕFkjFki
varied considerably

across the different data sets (Fig. 3), including estimates

Table 2 The four models we considered describing multi-resource-dependent consumption.

Name Abbreviation Per capita consumption rate, Fki Parameters

Holling Type I H1 akiNi 2

Holling Type II H2 akiNi

1þakihkiNi
4

Multi-resource Holling Type II H2-m akiNi

1þakihkiNiþakjhkjNj
4

Generalised multi-resource Holling Type II H2-g
akiNi 1þ 1�ϕFkiFkj

� �
akjhkjNj

h i

1þakihkiNið Þ 1þakjhkjNjð Þ�ϕFkiFkj
ϕFkjFki

akihkiakjhkjNiNj
6

These expressions for consumer per capita consumption rates correspond to the instantaneous consumption rate for both replacement and non-replacement

studies. As there are two resources under consideration, the number of parameters corresponds to the total number across both resources.
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Model rank by AIC

    Vucetich 2002 m98    
       Chan 2017 ch      

    Vucetich 2002 m14    
       Pusack 2018       

    Vucetich 2002 w14    
Kumar 1985 Dl      

       Chan 2017 lh      
     Prokopenko 2017     

Kumar 1985 Sm      
      Medoc 2015 pu      
      Uttley 1980 i1     

      Hassan 1976 Ag     
 vonWesternhagen 1976 2hr 

      Hassan 1976 Br     
      Medoc 2015 dv      

    Wasserman 2016 ti    
    Wasserman 2016 mb    

      Hassan 1976 Pp     
       Crowley 1989      
        Medoc 2013       
        Chong 2006       
    Griffen 2007 fA1a    
     Lang 2012 Po 10     
       Montoya 2000      
     Eveleigh 1982 ap    
     Griffen 2007 f1a    
      Uttley 1980 i2     
        Mills 2004       

      Uttley 1980 n1     
     Edwards 1961 ts2    
      Medoc 2015 be      
     Eveleigh 1982 pa    

    Wasserman 2016 bg    
Kumar 1985 Cc      

        Walde 1984       
      Elliot 2005 i5     
      Elliot 2005 i4     

     Edwards 1961 ts1    
      Hossie 2016 ev
     Eveleigh 1982 aa    
        Mertz 1968       
       Vahl 2005 k       

 vonWesternhagen 1976 8hr 
     Lang 2012 Po 20     
        Reeve 1997       

 vonWesternhagen 1976 4hr 
    Griffen 2007 fA1b    
      Uttley 1980 i3     
      Huffaker 1982      
        Salt 1974        

     Edwards 1961 nm     
      Fussmann 2005      
     Eveleigh 1982 pp    
    Vucetich 2002 w98    
     Eveleigh 1982 pd    

        Katz 1985        
      Elliot 2005 i2     

      Uttley 1980 n2     
        Chant 1966       
       Johnson 2006      
     Eveleigh 1982 ad    
        Long 2012b       
      Hossie 2016 cl     

        Kfir 1983        
     Lang 2012 Pt 10     

       Vahl 2005 t       
     Griffen 2007 f1b    
      Krylov 1992 i      
        Omkar 2004       
       Kratina 2009      
      Elliot 2005 i3     

      Jones 1988 e4      
       Chan 2017 ls      
      Jones 1988 e5      
       Chan 2017 cs      
       Mansour 1991      
     Lang 2012 Pt 20     

1 2 3 4 5

Model

H1
H2
BD
CM
G

−3 −2 −1 0 1 2 3

Effect of feeding on interference, ϕI kFki
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indicative of (1) feeding rates being unaffected by the non-fo-
cal resource (ϕFkiFkj

≈0 and/or ϕFkjFki
≈0), (2) feeding on one

resource completely precluding feeding on the other (ϕFkiFkj
≈1

and/or ϕFkjFki
≈1), (3) feeding on one resource only partially

precluding feeding on the other (0<ϕFkiFkj
<1 and/or

0<ϕFkjFki
<1) and (4) almost all combinations of these.

DISCUSSION

Our analyses provide compelling evidence that the processes
affecting resource- and consumer dependence in feeding rates

are frequently density dependent themselves. Across a large
proportion of the single-resource consumer-dependence data
sets, we observed that feeding and interference are rarely
mutually exclusive. Likewise, we observed that a consumer’s
behaviour when feeding on one resource can appear very dif-
ferent to its behaviour when feeding on another. That we were
able to obtain these inferences despite the fact that, to our
knowledge, the experimental design of none of the analysed
data sets was developed to measure our additional parameters
lends further credibility to our conclusions. We thus predict
that evidence in support of functional-response models

Model rank by AIC

 Kalinkat 2011 H 
   Iyer 1996 Br  
   Iyer 1996 Bc  
   Iyer 1996 Bp  
 Lester 2002 Af e 
  Elliot 2006 i2 

 Lester 2002 Af d 
  Ranta 1985 13  
 Kalinkat 2011 C 
 Lester 2002 Ty e 
 Kalinkat 2011 P 
  Elliot 2006 i3 

 Kalinkat 2011 T 
 Lester 2002 Ty d 
  Ranta 1985 10  
  Ranta 1985 18  
    Long 2012a   
  Ranta 1985 Ad  
  Colton 1987 1  
  Colton 1987 2  

  Nachappa 2006  
  Krylov 1992 ii 

   Wong 2005 rc  
  Elliot 2006 i5 
 Elliot 2006 i5B 
   Mattila 1998  
 Elliot 2006 i4B 
  Elliot 2006 i4 

   Wong 2005 ss  
 Kalinkat 2011 A 

1 2 3 4

  Model

H1
H2
H2−m
H2−g

Effects of feeding on feeding, ϕFkiFkj
 and ϕFkjFki

−2 0 2 4

Figure 3 The effect that feeding on one prey species has on feeding on another as estimated across 30 multi-resource-dependence data sets. On the left, we

show the rank-order performance of functional-response models as judged by AIC, with rank 1 indicating the best model and rank 4 indicating the worst.

The grey region indicates models with statistically equivalent support (i.e. ΔAIC<2). The red square is the generalised multi-resource Holling Type II

model introduced here (H2-g; eqn 10). (See Table 2 for all model abbreviations.) On the right, we show the estimated mean and uncertainty for the effects

feeding on one prey has on feeding on the other (i.e. ϕFkiFkj
and ϕFkjFki

in eqn 10). For visual clarity, the horizontal grey bands pair together the two

parameter estimates corresponding to each individual data set. Both points falling on the vertical line at 0 corresponds to the single-resource Holling Type

II model (H2), and both points falling on the vertical line at 1 corresponds to the multi-resource Holling Type II model (H2-m). The large uncertainty for

some points is most likely due to poor parameter identifiability. All line types are as in Fig. 2.

Figure 2 The effect of feeding on consumer interference as estimated across 77 single-resource consumer-dependence data sets. On the left, we show the

rank-order performance of functional-response models as judged by AIC, with rank 1 indicating the best model and rank 5 indicating the worst. The grey

region indicates models with statistically equivalent support (i.e. ΔAIC<2). The red square is the generalised consumer-dependent model introduced here

(G). (See Table 1 for all model abbreviations.) On the right, we show the estimated mean and uncertainty for the effect of feeding on interference (i.e.

ϕIkFki
). The vertical line at 0 corresponds to the Crowley–Martin model (CM), and the vertical line at 1 corresponds to the Beddington–DeAngelis model

(BD). Point estimates outside the plot region are indicated with circles on the plot border. Line types indicate the method for estimating uncertainty: solid

for profile confidence intervals, dot-dashed for quadratic approximation and dotted for bootstrapped data. Uncertainty estimates that are fully or partially

beyond the plot region are indicated by arrows. The large uncertainty for some data sets is most likely due to poor parameter identifiability.
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containing higher-order model terms will increase as data sets
with larger sample sizes and targeted experimental designs are
generated in the future.
Across the single-resource consumer-dependence data sets,

the Beddington–DeAngelis model provided a reasonably good
approximation to a rather large number of the single-resource
consumer-interference data sets, even when that model was
not statistically ‘best’ (Fig. 2). In terms of their point esti-
mates, the vast majority of these data sets had ϕIkFki

≤ 1, indi-
cating that per capita feeding rates saturate at ever decreasing
levels as the number of consumers increases. Phenomenologi-
cally, this arises either because the total time spent handling
resources increases in higher-consumer-density situations, or
because consumers spend more and more time interfering with
conspecifics that they would have otherwise spent feeding. In
some data sets (e.g. ‘Chong 2006’ and ‘Crowley 1989’), feed-
ing in the presence of just over three additional conspecific
consumers led to an effective doubling of each consumer’s
handling time per resource consumed, relative to that of an
isolated consumer individual. Dynamically, such ‘self-limita-
tion’ would lead to larger equilibrium resource densities and
smaller equilibrium consumer densities. In contrast, a smaller
subset of consumer-interference data sets suggest that con-
sumers spent less and less time handling resources when feed-
ing in the presence of more and more conspecifics (e.g. ‘Long
2012b’ and ‘Kratina 2009’), which may be indicative of coop-
erative foraging.
Across the multi-resource-dependence data sets, we found

that most were inconsistent with the assumptions implied by
either the single-resource or multi-resource Holling Type II
functional responses, and hence neither classical model
obtained widespread support. In both the empirical and theo-
retical literatures, it is common for researchers to decide a pri-
ori which model is most appropriate given known biology of
their focal consumer and to analyse their data accordingly.
Our results indicate that this may be an unwise path to follow
since one would almost always need to know the characteris-
tics of the consumers and resources before being able to ade-
quately describe feeding rates. Moreover, a given consumer’s
feeding rate could just as easily appear consistent with one
model for a first resource and with a different model for
another (e.g. ‘Long 2012a’ where ϕFkiFkj

≈0 and ϕFkjFki
≈1), or

somewhere in between (e.g. ‘Lester 2002 Ty d’ where
ϕFkiFkj

¼ 0:36 and ϕFkjFki
¼ 0:78). Clearly, more empirical

research is needed to understand the biology that determines
why each consumer–resource–resource combination lands in
one particular location along the spectra of process interde-
pendencies. The multi-resource Holling Type II is also widely
used in the simulations of food webs and other complex com-
munities (Brose et al., 2006; Williams et al., 2007; Berlow
et al., 2009; Iles & Novak, 2016; Delmas et al., 2017). Our
results therefore challenge this assumption of theory as well,
suggesting that ecological communities are most likely com-
posed of a much broader array of consumer types. The exact
dynamical properties that these varied consumer types may
impart to their populations and food webs remain unknown.
However, research on apparent competition (Holt, 1977;
Abrams & Matsuda, 1996) and analyses of other functional-
response models suggest their effects could be quite strong

(Adamson & Morozov, 2013, 2014; Aldebert & Stouffer,
2018; Coblentz & DeLong, 2020).

Functional responses emerge from independent and non-independent

processes

Our analyses emphasise the fact that even the simplest func-
tional responses are impacted by more than static attack
rates, handling times and interference strengths. Instead, we
argue it is more instructive to think about feeding as just
one of multiple processes in which a predator could be
engaging at any given moment of time (see also Koen-
Alonso, 2007; Kéfi et al., 2012; Lafferty et al., 2015). The
parameters ϕIkFki

, ϕFkiFkj
and/or ϕFkjFki

introduced here then
allow us to quantify the first-order dependencies that exist
between these processes. Importantly, while Crowley & Mar-
tin (1989) considered these dependencies to determine the
extent to which a predator can or cannot interfere and feed
simultaneously, we show here that viewing this as a dichot-
omy is vastly oversimplified. Instead, it is more appropriate
to consider the various ϕ’s as capturing two key features of
biological relevance. First, they allow us to statistically infer
whether the rates of two processes proceed independently of
each other. Second, when those rates do not proceed inde-
pendently, they capture whether one process can be said to
accelerate or decelerate the other. Within a functional-re-
sponse context, we expect that this ontology will come rather
naturally. After all, the Holling Type II functional response
emerges precisely from the separation and assumed mutual
exclusion of time spent searching and time spent handling
(Holling, 1959b).
The lessons learned here likely apply to many other areas of

ecology and biology. For example, the widespread use of Hol-
ling Type II functional responses and models like it in the
study of plant–pollinator interactions (Holland et al., 2002;
Morris et al., 2010) contrasts sharply with evidence that
plant-neighbourhood effects on pollinator behaviour can be
complex (Underwood et al., 2020). Models of such mutu-
alisms often assume a priori that no interference occurs
between pollinators (Okuyama & Holland, 2008; Vázquez
et al., 2015; Valdovinos, 2019). Based on our analyses, we
expect there to be many more underestimated processes at
play in these systems, extending well beyond the densities of
any focal interacting pair. Beyond consumer–resource interac-
tions, standard growth-response (Tilman, 1977, 1982; Roth-
haupt, 1988; Dybzinski & Tilman, 2007; Letten et al., 2018)
and models of enzyme kinetics (Michaelis & Menten, 1913)
applied to plant and microbial systems are both mathematical
equivalents to the single-resource Holling Type II functional
response, yet are routinely adopted in multi-resource contexts
(Descamps-Julien & Gonzalez, 2005; Kleinhesselink & Adler,
2015; Letten et al., 2018). This occurs despite the tremendous
utility that exists in identifying scenarios in which access to
multiple resources synergistically promotes or retards growth
(Sperfeld et al., 2012; Jeyasingh et al., 2020). Indeed, from
trophic interactions and growth models to epistasis (Poelwijk
et al., 2016; Sailer & Harms, 2017a,b) and drug–drug interac-
tions (Tekin et al., 2018; Katzir et al., 2019), there are count-
less areas of biology in which researchers are interested in
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ways to quantify similar forms of non-independence and non-
additivity. Our mathematical framework provides a general
basis with which to explore each of these and others, follow-
ing a tradition of embracing biological complexity rather than
shying away from it (Evans et al., 2013).
As useful as this shift in perspective might appear, we nev-

ertheless admit that it is not without practical limitations. As
the numbers of processes and species under consideration
increase, so too does the maximum number of potential
parameters at a disproportionately high rate. In our ‘simple’
scenario of a single consumer feeding on two resources, there
were just two new parameters linking the two feeding rates;
with three resources there are six new parameters, with four
there are 12, and so on. The situation with multiple con-
sumers and multiple resources becomes even more extreme.
On the plus side, the data themselves can impose limits on
model complexity since many processes of relevance to feeding
rates – such as consumer interference and even prey handling
– can only be measured indirectly in terms of their impact on
feeding rates, and only one such implicit process can be mea-
sured per species density (Supplementary Material). Greater
statistical power can therefore be achieved by obtaining infor-
mation on additional response variables beyond feeding rates,
as each such variable will contribute to the statistical likeli-
hood of a given experimental replicate (Arditi & Glaizot,
1995). That said, the correct interpretation of such measured
response variables is often not as cut and dry as it is with
feeding (where resources are either consumed or not con-
sumed), with even observable ‘handling times’ not necessarily
reflecting a rate-limiting process (Jeschke et al., 2002) and
observable antagonistic encounters among individuals not nec-
essarily reflecting rate-altering behavioural effects (Sheriff
et al., 2020).
Given these practical limitations, a major challenge is to

find model simplifications that can be supported, and to deter-
mine robust strategies for doing so. One option is to adopt a
descriptive approach as proposed by Arditi & Michalski
(1996); its phenomenological nature lends itself to a quick
reduction in the number of parameters needing to be inferred.
Alternatively, one can follow a statistical approach to the
problem. For example, our fits to the multi-resource-depen-
dent data sets always treated both resources as functionally
distinct (i.e. aki≠akj and hki≠hkj). Given a many-resource data
set, it may instead be advantageous to assess whether two or
more resources are functionally equivalent in terms of model
fit (Carrara et al., 2015; Ovaskainen et al., 2017). The statisti-
cal approach could also treat variation between resources as a
statistical random effect (Ovaskainen & Soininen, 2011; Ovas-
kainen et al., 2016) or allow parameter variation to mirror
phylogenetic or trait distances (Kalinkat et al., 2013). Clearly,
proper inference of any such models will benefit from
increased replication (Novak & Stouffer, 2020), as well as
more robust and creative study designs (e.g. Dell et al., 2014;
Novak et al., 2017; Uszko et al., 2017). Even so, not all phe-
nomenological or statistical approaches are guaranteed to be
logically consistent (Arditi & Michalski, 1996; Morozov &
Petrovskii, 2013). All models should therefore be tested
against criteria beyond fit and parsimony before they are

applied, for example in population models (Malard et al.,
2020; Moisset de Espanés et al., 2020).

CONCLUSIONS

The study of biological models serves a wide variety of pur-
poses (Evans et al., 2013; Otto & Rosales, 2020). We have
focused here on the ability of generalisable models to fit
observed variation in feeding rates across a large collection of
empirical data sets. Rather than introduce additional, phe-
nomenological parameters in the way that can occur with sta-
tistical methods like multiple regression (e.g. the inclusion of
m-way interaction terms; Cox, 1984), our mathematical
approach demonstrates how and why such interaction terms
emerge: the interdependence of biological processes. Biological
explanations for the large variation we observed across data
sets remain to be determined. We therefore hope our study
will also provide a fruitful starting point for a more mechanis-
tic synthesis in the not too distant future.
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