In the format provided by the authors and unedited.

Rapid and direct recoveries of predators and prey through synchronized ecosystem management

Jameal F. Samhouri^{1*}, Adrian C. Stier², Shannon M. Hennessey³, Mark Novak⁴, Benjamin S. Halpern^{2,5,6} and Phillip S. Levin¹

2 Is this theory robust to different intrinsic productivity rates, exploitation histories,

3 and other considerations?

4 Many factors might influence our theoretical expectations, the most important of which relate to life history traits of the predator and prev^{1,2} and intensity of historical 5 exploitation levels^{3,4}. To assess potential effects of these factors, we first use numerical 6 7 simulation to evaluate which recovery strategy produces the shortest return time and most 8 direct recoveries given different combinations of predator and prev productivity and three 9 scenarios of historical exploitation: under-exploitation, sustainable-exploitation, and over-exploitation¹, such that exploited predator and prev densities prior to recovery were 10 11 \sim 70%, \sim 30%, and \sim 20% of unexploited values, respectively.

We calculate the percent reduction in community return time obtained from the recovery strategy with the shortest value compared to that with the next shortest. Because predator-first recovery always minimizes community volatility to zero, we report the volatility obtained from the recovery strategy with the second smallest value. This quantity represents the percentage by which the maximum community density achieved during the transient period of recovery exceeds the unexploited equilibrium community density.

Synchronous recovery consistently exhibits the fastest community return times; in
numerical simulations, synchronous recovery produces 70-90% faster community return
times than the other strategies (Supplementary Figs. 1-2). Higher exploitation levels
slightly diminish the relative benefit of synchronous recovery in terms of community
return time: synchronous recovery produces ~90% faster returns times in the under-

exploitation scenarios but ~70% faster returns times in the over-exploitation scenarios
(Supplementary Fig. 2). In any specific exploitation scenario, higher prey intrinsic
productivity rates reduce differences in community return time among recovery
strategies.

28 Predator-first recovery damps out high-amplitude transient dynamics most under 29 all exploitation scenarios, causing this strategy to exhibit the most direct recoveries 30 (Supplementary Figs. 1-2). The second best strategy for producing small values of 31 community volatility is synchronous recovery, with values ranging from 0-32% and an 32 average of 8% (Supplementary Fig. 2). There was one exception to this pattern, where 33 predator-first and synchronous recovery both had zero community volatility: Y = 500, 34 $a_x=a_y=0.03$, and $r_x=0.8$. Community volatility was four-fold higher for the prey-first 35 strategy than for the synchronous strategy in the underexploitation scenario, but fourteen-36 fold higher in the overexploitation scenario (Supplementary Fig. 1). In any specific 37 exploitation scenario, higher prey intrinsic productivity rates reduce differences in 38 community volatility among recovery strategies.

39 Beyond species' productivity rates and exploitation histories, in real exploited 40 communities more species (that interact in many ways beyond predator-prey dynamics), 41 temporal variation in parameter values, environmental stochasticity, stage or spatial 42 structure within predator and prey populations, and the potential for hysteresis following dis-assembly⁵ (especially due to predator-prey role reversals^{6,7}) may all interact to affect 43 expectations for recovery times and trajectories⁸⁻¹⁰. Our two-trophic level predator-prev 44 45 model assumes these factors are not necessary to understand broad patterns of ecosystem recovery. Similarly, the social and economic costs associated with cessation of predator 46

versus prey harvest are nuanced, requiring incorporation of discount rates and
consideration of the optimal effort required to achieve pre-specified social goals¹¹⁻¹³.
Certainly, exploring the potential effects of additional complexities will be important
extensions of the basic ideas introduced here. Yet, even with their inclusion, the large
differences in our transient approximations of return time and volatility between
synchronous and sequential recovery strategies suggest the results should be general.

53

54 Do analytical solutions of recovery correspond to numerical simulations?

In addition to conducting numerical simulations of synchronous and sequential
community recovery, we determine the equilibrium solutions to the model (Box 1)
analytically using Mathematica v10. To make this analysis more tractable using

58 Mathematica, we reformulate equation 2 as follows:

59
$$\frac{dP}{dt} = P[c(a_xX + a_yY) - sP - d_P] - h_PP$$
(S1)

In this formulation, *s* represents density-dependent losses due to food limitation or other
factors related to prey densities and is equivalent to

$$s = \frac{c(a_X X + a_Y Y) - d_P}{K_P}$$
(S2)

We determine the equilibrium densities of the predator and focal prey that allow for feasible fixed point coexistence in four situations, when: (i) both species are exploited $(h_X > 0, h_P > 0)$ (state *E* in Supplementary Fig. 3), (ii) only the prey is exploited $(h_X > 0, h_P$ =0) (state *S* in Supplementary Fig. 3), (iii) only the predator is exploited $(h_X = 0, h_P > 0)$ (state *S* in Supplementary Fig. 3), or (iv) neither species is exploited $(h_X = h_P = 0)$ (state *R* in Supplementary Fig. 3; Supplementary Table 1). Situation (i) thus corresponds to a disassembled community at equilibrium that could recover from exploitation via

synchronous recovery (situation (iv)) or sequential recovery (situation (ii) or (iii)

71 followed by (iv)).

72 Because the three recovery scenarios are nested within these four situations, we 73 examine how the community responds to changes in the per capita rates with which 74 predator and prey are harvested. In addition, we conduct analyses to consider how 75 increased intrinsic growth rate of the focal prey population (from $r_X = 1$ to $r_X = 5$) and 76 increased availability of other prev (from Y = 500 to Y = 1000), which effectively 77 increases intrinsic growth rate of the predator population, influence community responses 78 under the three recovery strategies. All interpretations are predicated on the insight that a 79 press perturbation from an exploited to an unexploited state can be interpreted as the 80 decay of a pulse perturbation from an exploited state back to an unexploited state 81 (Supplementary Fig. 3).

82 Specifically, we evaluate the characteristic return time to the unexploited state 83 following an instantaneous cessation of harvest $(-1/\text{Re}(\lambda_1))$, the analytical first-order analog to true return time in the numerical simulations presented in the main text¹⁴ 84 85 (Supplementary Fig. 3). To be conservative, we calculate return time assuming that zero 86 time is spent in situations (ii) and (iii) during sequential recoveries. In addition, we 87 determine the community's reactivity (the maximum possible growth rate of its transient 88 response toward the unharvested state following a cessation or reduction of harvest¹⁵). 89 Note that reactivity relates closely to the community volatility metric used in the main 90 text, but differs in that it reflects a first-order approximation to the community's response 91 to a perturbation (i.e. the sudden cessation or reduction of harvest) of any magnitude

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-016-0068 | www.nature.com/natecolevol

92	(Supplementary Fig. 3). Both community response metrics can be compared across the
93	three recovery strategies by examining their values for $h_P = h_X = 0$ (synchronous), $h_P = 0$
94	for any value of h_X (predator-first), or $h_X = 0$ for any value of h_P (prey-first).
95	In general, our analytical results corroborated those obtained via numerical
96	simulations (Supplementary Fig. 4). As would be expected given our model, equilibrium
97	densities of both the prey (Supplementary Fig. 4a) and the predator (Supplementary Fig.
98	4b) decline linearly with increasing per capita harvest rates, with higher harvest rates on
99	the prey reducing the range of harvest rates on the predator that permit coexistence (cf.
100	blue and red lines in Supplementary Fig. 4b). Higher intrinsic growth of the prey
101	population increases equilibrium densities of both the prey and the predator, while greater
102	abundance of other prey increases the equilibrium density of the predator and decreases
103	the equilibrium density of the prey.
104	Analytical solutions confirm that synchronous recovery exhibits the shortest
105	characteristic return times ($h_X = h_P = 0$, blue line intercept of y-axis in both
106	Supplementary Figs. 4c-d), but whether predator-first recovery ($h_P=0$, blue line in
107	Supplementary Fig. 4c) or prey-first recovery ($h_X=0$, blue line in Supplementary Fig. 4d)
108	causes the second shortest characteristic return time depends on the harvest rate of the
109	species still being exploited (with all other parameters at their baseline values). These
110	results account for characteristic return times from equilibria reached when one or both
111	species are harvested.
112	The conclusion that synchronous recovery has the shortest return time is
113	unaffected by changing the intrinsic growth rate of the focal prey. Return time for
114	synchronous recovery (corresponding to $h_P = h_X = 0$ in both Supplementary Figs. 4cd) is

faster than that of predator-first recovery for both baseline and large r_X because the intersection of the $h_P = 0$ isocline with the y-intercept (i.e., at $h_X = 0$) in Supplementary Fig. 4c is less than the return time of the $h_P = 0$ isocline for any non-zero value of h_X in both cases. Similarly, return time for synchronous recovery is faster than that of prey-first recovery for both baseline and large r_X because the intersection of the $h_X = 0$ isocline with the y-intercept (i.e. at $h_P = 0$) in Supplementary Fig. 4d is less than the return time of the

121 $h_X = 0$ isocline for any non-zero value of h_P in both cases.

Increasing the availability of other prey, however, allows prey-first recovery to 122 123 become faster than synchronous or predator-first recovery in the special case where r_X is 124 small and Y is large. This result can be observed by examining the intersection of the h_X 125 =0 isocline with the y-intercept (i.e., at h_P =0) in Supplementary Fig. 4d, and noting that 126 it is greater than the return time of the $h_X = 0$ isocline for any non-zero value of 127 h_{P} . However, synchronous recovery is faster than prey-first recovery for large r_{X} and 128 large Y. Furthermore, return time for synchronous recovery (corresponding to $h_P = h_X = 0$ 129 in both Supplementary Figs. 4cd) is faster than that of predator-first recovery for both 130 baseline and large Y because the intersection of the $h_P = 0$ isocline with the y-intercept 131 (i.e., at $h_X=0$) in Supplementary Fig. 4c is less than the return time of the $h_P=0$ isocline 132 for any non-zero value of h_X in both cases.

With all other parameters at their baseline values, predator-first recovery exhibits the lowest reactivity levels for any feasible prey harvest rate and declines with increasing prey harvest rate (Supplementary Fig. 4e), whereas prey-first recovery generates the largest reactivity levels at any feasible predator harvest rate, and prey-first reactivity increases with predator harvest rate (Supplementary Fig. 4f). Synchronous recovery thus

exhibits an intermediate level of reactivity (blue line intercept of y-axis in both Supplementary Fig. 3e-f). These conclusions are largely unaffected by changes in r_X and Y, although there is a small region of parameter space where large Y causes the reactivity of synchronous recovery to be smaller than either of the other two strategies

142 (Supplementary Fig. 4e).

143 Our results may be understood more generally by considering the energy that is 144 taken out of the system via harvest: the more energy in the system, the faster the characteristic return time and the larger the reactivity¹⁶. Because energy is already lost in 145 146 the transfer from prey to predator, harvesting some fraction of predators (i.e., at some 147 given per capita rate) will remove less overall energy from the system than the harvest of 148 the same fraction of prey. Thus, predator-first recovery will always result in a less 149 reactive system. The effect of predator-first recovery on the return time will depend on 150 the per capita rate at which the prey are harvested. If the prey's per capita harvest rate is 151 large (e.g., over-exploitation scenario) then a reduction (or cessation) in the harvesting of 152 the predator population can have a larger impact on recovery rate than when the prey's 153 per capita harvest rate is low.

154

155 Are there drawbacks to synchronous versus sequential recovery?

Synchronous and sequential recovery strategies will have different socioeconomic implications due to different timing and durations of reduced harvest opportunities. We compare the cumulative total, predator-only, and prey-only yields among the recovery strategies assuming predators and prey hold equal value per unit biomass. We find that the cumulative total yield and the cumulative yield of prey differ by 5% or less among the

161	recovery strategies (Supplementary Fig. 5). In contrast, predator-first recovery produces a
162	cumulative yield of predators that is $\sim 30\%$ higher than cumulative predator yield under
163	the other two strategies (Supplementary Fig. 5). However, because the duration of
164	exploitation varies among the three recovery strategies (Fig. 2), predator yields per unit
165	time prior to cessation of harvest are equivalent among the three recovery strategies
166	(Supplementary Fig. 5). Furthermore, prey yield per unit time is lower for predator-first
167	recovery than for the other two strategies (Supplementary Fig. 5). Thus, the drawbacks of
168	synchronous recovery in terms of foregone yields are less than or equal to those
169	associated with the other two strategies. We note, however, that differences in the value
170	of predator and prey species may lead to different inferences about the effectiveness of
171	these alternative recovery strategies ¹⁷ .
172	
1, 2	
173	How frequent is synchronous versus sequential community recovery in the real
173 174	How frequent is synchronous versus sequential community recovery in the real world?
172 173 174 175	How frequent is synchronous versus sequential community recovery in the real world? We assessed a comprehensive database of marine fisheries ³ , focusing on exploited
173 174 175 176	How frequent is synchronous versus sequential community recovery in the real world? We assessed a comprehensive database of marine fisheries ³ , focusing on exploited communities in which time-series of generalist predators and their prey were available,
173 174 175 176 177	How frequent is synchronous versus sequential community recovery in the real world? We assessed a comprehensive database of marine fisheries ³ , focusing on exploited communities in which time-series of generalist predators and their prey were available, spanning time periods in which both were considered overexploited and had since
173 174 175 176 177 178	How frequent is synchronous versus sequential community recovery in the real world? We assessed a comprehensive database of marine fisheries ³ , focusing on exploited communities in which time-series of generalist predators and their prey were available, spanning time periods in which both were considered overexploited and had since recovered. We define a dis-assembled community as one in which two or more species,
173 174 175 176 177 178 179	How frequent is synchronous versus sequential community recovery in the real world? We assessed a comprehensive database of marine fisheries ³ , focusing on exploited communities in which time-series of generalist predators and their prey were available, spanning time periods in which both were considered overexploited and had since recovered. We define a dis-assembled community as one in which two or more species, occupying different trophic levels and occurring in the same geographic region, had
173 174 175 176 177 178 179 180	How frequent is synchronous versus sequential community recovery in the real world? We assessed a comprehensive database of marine fisheries ³ , focusing on exploited communities in which time-series of generalist predators and their prey were available, spanning time periods in which both were considered overexploited and had since recovered. We define a dis-assembled community as one in which two or more species, occupying different trophic levels and occurring in the same geographic region, had overlapping periods of depletion. Following Neubauer et al. ³ , we classify a species
 173 174 175 176 177 178 179 180 181 	How frequent is synchronous versus sequential community recovery in the real world? We assessed a comprehensive database of marine fisheries ³ , focusing on exploited communities in which time-series of generalist predators and their prey were available, spanning time periods in which both were considered overexploited and had since recovered. We define a dis-assembled community as one in which two or more species, occupying different trophic levels and occurring in the same geographic region, had overlapping periods of depletion. Following Neubauer et al. ³ , we classify a species (stock) as depleted when its biomass, <i>B</i> , is less than half of its maximum sustainable
 172 173 174 175 176 177 178 179 180 181 182 	How frequent is synchronous versus sequential community recovery in the real world? We assessed a comprehensive database of marine fisheries ³ , focusing on exploited communities in which time-series of generalist predators and their prey were available, spanning time periods in which both were considered overexploited and had since recovered. We define a dis-assembled community as one in which two or more species, occupying different trophic levels and occurring in the same geographic region, had overlapping periods of depletion. Following Neubauer et al. ³ , we classify a species (stock) as depleted when its biomass, <i>B</i> , is less than half of its maximum sustainable yield, <i>B</i> _{MSY} . Depletion periods are considered to overlap among species if $B < 0.5B_{MSY}$ for
 173 174 175 176 177 178 179 180 181 182 183 	How frequent is synchronous versus sequential community recovery in the real world? We assessed a comprehensive database of marine fisheries ³ , focusing on exploited communities in which time-series of generalist predators and their prey were available, spanning time periods in which both were considered overexploited and had since recovered. We define a dis-assembled community as one in which two or more species, occupying different trophic levels and occurring in the same geographic region, had overlapping periods of depletion. Following Neubauer et al. ³ , we classify a species (stock) as depleted when its biomass, <i>B</i> , is less than half of its maximum sustainable yield, <i>B</i> _{MSY} . Depletion periods are considered to overlap among species if $B < 0.5B_{MSY}$ for both species for three or more consecutive years. We focus our analysis on the subset of

184 dis-assembled communities (hereafter, case studies) in which higher- and lower-trophic 185 level species have a documented predator-prey relationship (Supplementary Tables 2-3). 186 Within the case studies (N=37) we define a recovered community as one in which 187 the biomass of both predator and prey meets or exceeds B_{MSY} , as inferred by Neubauer et al.³. We designate a case study as an example of synchronous recovery if recoveries 188 189 occur within three years of one another, predator-first recovery if the predator recovers 190 four or more years before the prey, and prey-first recovery if the prey recovers four or 191 more years before the predator (Supplementary Table 2). Trophic levels for each species 192 were obtained from FishBase and are considered distinct if they differ by 0.5 or more 193 units. Note, however, that a trophic level distinction alone was insufficient for inclusion 194 in our analysis; we restrict our analysis to communities with documented predator-prev 195 relationships (Supplementary Table 3). Though this database precludes assessment of the 196 influence of management actions, climate, or other factors in the observed recovery 197 patterns, changes in exploitation rates were the primary factor under direct control of 198 managers in these systems. 199

To test whether the decisions we made in categorizing case studies influence the outcomes of our analyses, we compare the results of the initial, moderately inclusive set of assumptions to two alternative sets of assumptions (Supplementary Table 2), and to removal of the most common species in the database, Atlantic cod (N=28). The first set of assumptions is the most inclusive of case studies in the database, and designates distinct trophic levels as a difference of 0.1 units or more, overlapping depletion periods as at least 1 year overlap, and synchronous recovery as the depletion period of both the predator and prey species ending in the same year. The second set of assumptions is the

207 least inclusive of case studies in the database, and includes predators and prey with a

trophic level difference greater than or equal to 1.0 with depletion periods overlapping by
5 years or more, and defines synchronous recovery as depletion periods that ended within
5 years of each other.

It is likely that some of the recoveries predicted by Neubauer et al.³ did not, in 211 212 fact, occur, especially for the most common species in the database, Atlantic cod. Our 213 analysis would be more likely to classify these case studies as synchronous when, upon 214 actual recovery of Atlantic cod, they would be more accurately assigned as sequential 215 recoveries (with Atlantic cod recovering after its species pair). Thus, our test would 216 conservatively favor the detection of synchronous recoveries. To determine the influence 217 of Atlantic cod on our results, we repeat the Chi-squared tests removing these case 218 studies.

219 Our assessment suggests that there are approximately equal numbers of 220 synchronous and sequential recoveries, with predator-first recoveries being less common 221 than prey-first recoveries (N=27 case studies; Supplementary Fig. 6). These patterns are 222 generally robust to different ways of categorizing the case studies as synchronous versus 223 sequential, and to the exclusion of the most common species from the database 224 (Supplementary Figs. 7-8). The most inclusive set of assumptions leads to the conclusion 225 that synchronous recovery is significantly less common than sequential recovery (chi-226 square test, p=0.004), while the least inclusive set leads to the opposite conclusion (chi-227 square test, p=0.09; Supplementary Fig. 7). However, neither of these alternative sets of 228 assumptions changes the qualitative inference that predator-first recovery was least 229 common (both chi-square tests, p < 0.01; Supplementary Fig. 7). Finally, even with

- removal of case studies that include Atlantic cod from the analysis the number of
- 231 occurrences of synchronous and sequential recoveries remains statistically
- indistinguishable (chi-square test, p=0.45), and this change makes the number of
- 233 occurrences of synchronous, predator-first, and prey-first recoveries statistically
- indistinguishable as well (chi-square test, *p*=0.14; Supplementary Fig. 8).

- 235 Supplementary Figure 1. Influence of alternative histories of exploitation (A,B) and
- 236 different predator and prey intrinsic productivity rates (C,D) on the effectiveness of three
- 237 recovery scenarios.
- 238

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-016-0068 | www.nature.com/natecolevol

240 Supplementary Figure 2. Comparison of community (left) return times and (right)

volatilities for a range of predator ($a_x=a_y$) and prey (r_x) intrinsic productivity rates and across three exploitation scenarios. Community return times under synchronous recovery are compared to the next best strategy, while community volatilities are reported for the second best recovery strategy, as predator-first recovery always produces zero volatility. Blank cells represent parameter combinations that cannot lead to coexistence of predator and prev at under-, sustainably- and over-exploited levels.

Supplementary Figure 3. Let *E*, *S*, and *R* respectively denote the equilibrium 248 249 population sizes of the Exploited, intermediate step of the Sequential recovery (either 250 prey- or predator-first), and the fully Recovered states. Let A denote the difference in 251 population size between E and S, let B denote the difference in population size between S 252 and R, and let C denote the difference in population size between E and R. It must then be 253 that A + B = C. Finally, let λ_R be the return rate to the Recovered state following a pulse 254 perturbation, regardless of how large the perturbation is (i.e., whether the perturbation 255 takes the system all the way to Exploited E state or back to the intermediate S state). Also 256 let λ_S be the return rate to the intermediate Sequential recovery state (either prey- or 257 predator-first). To be conservative, we calculate return time assuming that zero time is 258 spent in the Sequential recovery state S. See SI text for details.

261 Supplementary Figure 4. Analytical solutions for the (a-b) equilibrium densities, (c-d) characteristic return times, and (e-f)

263 ranges allowing feasible fixed-point coexistence, with solid lines corresponding to baseline parameter set. Note that given our baseline

reactivities of the community as a function of per capita harvest rates on the prev and predator. Lines are drawn only within parameter

- parameter set, coexistence is not stable and feasible for Y < 350. The *y*-intercepts in the figures correspond to solutions for
- synchronous recovery ($h_x = h_p = 0$). Blue lines indicate solutions for $h_p = 0$ (predator-first recovery) in (a), (c), and (e), and for $h_x = 0$
- 266 (prey-first recovery) in (b), (d), and (f). Red lines indicate solutions for $h_P = 0.4$ in (a), (c), and (e), for $h_X = 0.8$ in (b), (d), and (f). In all
- panels, dashed lines indicate solutions for focal prey's intrinsic growth rate increased 5-fold above baseline (i.e. from $r_X = 1$ to $r_X = 5$),
- whereas dotted lines indicate solutions for other prey's abundance increased 2-fold above baseline (i.e., from Y = 500 to = 1000). See
- 269 Supplementary Information text for details, and *Methods* in the main text for other parameter values.

262

- 272 Supplementary Figure 5. Effect of three recovery scenarios under the baseline
- 273 parameter set on (top) cumulative yields and (bottom) yields per unit time.

- 276 Supplementary Figure 6. Frequency of synchronous vs sequential recoveries (chi-
- square test: *p*=0.46) and synchronous (*N*=16), predator-first (*N*=2), and prey-first (*N*=9)
- 278 recoveries (chi-square test: p=0.004), identified in the RAM legacy database³.
- 279

280

282 **Supplementary Figure 7**. Frequency of synchronous vs sequential recoveries, and 283 synchronous, predator-first, and prev-first recoveries, identified in the RAM legacy database³. Left, the moderately inclusive categorization, such that overlapping depletion 284 285 periods of predator and prev were defined as 3+ years, trophic level distinctions were 286 defined as >0.5 TL unit difference, and synchronous recoveries were identified as those 287 that occurred within 3 years of one another. Middle, the least inclusive categorization 288 (synchronous N=13, predator-first N=0, prey-first N=5), such that overlapping depletion 289 periods of predator and prey were defined as 5+ years, trophic level distinctions were 290 defined as ≥ 1 TL unit difference, and synchronous recoveries were identified as those 291 that occurred within 5 years of one another. Right, the most inclusive categorization 292 (synchronous N=10, predator-first N=6, prey-first N=21), such that overlapping depletion 293 periods of predator and prev were defined as 1+ years, trophic level distinctions were 294 defined as ≥ 0 TL unit difference, and synchronous recoveries were identified as those 295 that occurred in the same year.

296

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-016-0068 | www.nature.com/natecolevol

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

- 298 Supplementary Figure 8. Frequency of synchronous vs sequential recoveries, and
- synchronous (N=5), predator-first (N=1), and prey-first (N=1) recoveries, identified in the
- 300 RAM legacy database³, after removing Atlantic cod from the case studies.
- 301

302

304 Supplementary Table 1. Steady state analytical solutions under exploited and three 305 recovery scenarios.

	Equilbrium	Prey	Predator
	Exploited	$\frac{((-hX+r)s+a(d+hP-acY))K}{rs+a^2cK}$	$\frac{-r(d+hP-acY)+ac(-hX+r)K}{rs+a^2cK}$
	Synchronous	$\frac{(rs+a(d-acY))K}{rs+a^2cK}$	$\frac{r(-d+ac(Y+K))}{rs+a^2cK}$
	Prey-first	$\frac{(rs+a(d+hP-acY))K}{rs+a^2cK}$	$-\frac{r(d+hP-ac(Y+K))}{rs+a^2cK}$
	Predator-first	$\frac{((-hX+r)s+a(d-acY))K}{ra+a^2aK}$	$\frac{-dr+ac(-hXK+r(Y+K))}{ma+a^2aK}$
6		$\gamma = \gamma s \pm a - c \Lambda$	is + a - cK

306 307

Summlann and any	Table 1	Casa studias	artua at a d f	Prome Marshana	-134	fam amamini aal	amaleraia
Supplementary	I able 2.	Case studies	extracted I	rom Neudauer	et al. I	or empirical	analysis.

Region	Country	Predator	Prey	Predator Depletion period	Prey Depletion period	Depletion period overlap	Recovery strategy (moderate)	Recovery strategy (least)	Recovery strategy (most)
Baltic Area 30 (ICES)	Multinational	Atlantic cod	Herring	1966-1982	1979-1989	3	Predator-first	Predator-first	-
Baltic Area 31 (ICES)	Multinational	Atlantic cod	Herring	1987-2011	1994-2007	13	Prey-first	Prey-first	Synchronous
Baltic Areas 22 and 24	Multinational	Atlantic cod	Sprat	1986-2012	1986-1992	6	Prey-first	Prey-first	Prey-first
Baltic Areas 25-32	Multinational	Atlantic cod	Herring	1987-2011	1996-2011	15	Synchronous	Synchronous	Synchronous
Baltic Areas 25-32	Multinational	Atlantic cod	Sprat	1966-1982	1979-1983	3	Synchronous	Predator-first	-
Baltic Areas 25-32	Multinational	Atlantic cod	Sprat	1987-2011	1986-1992	5	Prey-first	Prey-first	Prey-first
Faroe Plateau	Multinational	Atlantic cod	Haddock	1990-1995	1991-1996	4	-	Predator-first	-
Faroe Plateau	Multinational	Atlantic cod	Haddock	2004-2012	2008-2011	3	-	Prey-first	-
FO 3LN	Multinational	Greenland halibut	Redfish species	1995-2007	1992-2000	5	Prey-first	Prey-first	-
FO 3N	Multinational	Atlantic cod	American Plaice	1960-2008	1986-2008	22	Synchronous	Synchronous	-
FO 3NO	Multinational	Atlantic cod	Redfish species	1960-2008	1992-2000	8	Prey-first	Prey-first	-
FO 3NO	Multinational	Atlantic cod	Yellowtail Flounder	1960-2008	1976-1999	23	Prey-first	Prey-first	Prey-first
FO 5Y	USA	Atlantic Halibut	Witch Flounder	1890-2008	1994-2008	14	Synchronous	Synchronous	Synchronous
FO 5YZ	USA	Atlantic Halibut	American Plaice	1890-2008	1986-2008	22	Synchronous	Synchronous	-
FO 5Z	USA	Atlantic Halibut	Winter Flounder	1890-2008	1985-2007	22	Synchronous	Prey-first	Synchronous
FO 5Zjm	Canada	Atlantic cod	Haddock	1993-2004	1970-2002	9	-	Prey-first	-
Georges Bank	USA	Atlantic cod	Acadian redfish	1984-2008	1957-2008	24	Synchronous	Synchronous	Synchronous
Georges Bank	USA	Atlantic cod	Haddock	1984-2008	1968-2006	22	-	Prey-first	-
Georges Bank	USA	Atlantic cod	White hake	1984-2008	1994-2008	14	-	Synchronous	-
Georges Bank	USA	Atlantic cod	Yellowtail Flounder	1984-2008	1974-2008	24	Synchronous	Synchronous	Synchronous
Gulf of Maine	USA	Atlantic cod	Northern shrimp	1983-2008	1998-2006	8	Synchronous	Prey-first	Synchronous

Region	Country	Predator	Prey	Predator Depletion period	Prey Depletion period	Depletion period overlap	Recovery strategy (moderate)	Recovery strategy (least)	Recovery strategy (most)
Gulf of Maine	USA	Atlantic cod	Yellowtail Flounder	1983-2008	1985-2008	23	Synchronous	Synchronous	Synchronous
Iceland	Multinational	Atlantic cod	Capelin	1991-2012	2005-2007	2	-	Prey-first	-
Iceland	Multinational	Atlantic cod	Haddock	1991-2012	1983-2012	21	-	Synchronous	-
Iceland	Multinational	Atlantic cod	Herring	1991-2012	1989-2011	20	Synchronous	Prey-first	Synchronous
Iceland	Multinational	Haddock	Capelin	1983-2012	2005-2007	2	-	Prey-first	-
Iceland	Multinational	Haddock	Capelin	1983-2012	1980-1984	1	-	Prey-first	-
Irish Sea	Multinational	Atlantic cod	European Plaice	1978-2011	1995-2006	11	Prey-first	Prey-first	Prey-first
Irish Sea	Multinational	Atlantic cod	European Plaice	1978-2011	1976-1988	10	Prey-first	Prey-first	Synchronous
Irish Sea (Northern)	Multinational	Atlantic cod	Herring	1978-2011	1978-2011	33	Synchronous	Synchronous	Synchronous
North Sea	Multinational	Atlantic cod	Herring	1989-2011	1996-2002	6	Prey-first	Prey-first	Prey-first
North Sea	Multinational	Atlantic cod	Norway pout	1989-2011	2003-2008	5	Synchronous	Prey-first	Synchronous
North Sea	Multinational	Atlantic cod	Sandeel	1989-2011	2003-2008	5	Synchronous	Prey-first	Synchronous
Northeast Arctic	Multinational	Atlantic cod	Haddock	1979-2009	1977-1993	14	-	Prey-first	-
Prince Rupert District	Canada	Sablefish	Pacific herring	1997-2005	1966-2008	8	Synchronous	Predator-first	-
Queen Charlotte Islands	Canada	Sablefish	Pacific herring	1997-2005	1986-2008	8	Synchronous	Predator-first	-
West Coast of Vancouver Island	Canada	Pacific cod	Pacific herring	1994-2002	1995-2008	7	Predator-first	Predator-first	-

Supplementary Table 3. Documentation of predator-prey relationships analyzed for the case studies extracted from Neubauer et al.³. Note that we included only those predator-prey relationships for which there was documented evidence that the prey constituted 5% or more of the predator's diet.

Region	Predator	Prey	Predator-prey relationship	Predator diet citation
Georges Bank	Atlantic cod	Acadian redfish	Redfish comprise 14% diet composition in cod stomachs near the Gulf of St. Lawrence (Kohler and Fitzgerald 1969), and while small redfish can make up <1% of cod diet by mass in the southern Gulf of St. Lawrence (Hanson and Chouinard 2002), cod over 50 cm near the Flemish Cap contained ~95% small redfish (Templeman 1965).	 Hanson, J.M. and Chouinard, G.A. 2002. Diet of Atlantic cod in the southern Gulf of St Lawrence as an index of ecosystem change, 1959–2000. Journal of Fish Biology 60: 902–922. Kohler, A.C., and Fitzgerald, D.N. 1969. Comparisons of Food of Cod and Haddock in the Gulf of St. Lawrence and on the Nova Scotia Banks. Journal Fisheries Research Board of Canada 26(5): 1273- 1287. Templeman, W. 1965. Some instances of cod and haddock behavior and concentrations in the Newfoundland and Labrador areas in relation to food. ICNAF Special Publication 6: 449-461.
FO 3N	Atlantic cod	American Plaice	American Plaice are from 6% (Hanson and Chouinard 2002) to 27% (Waiwood and Majkowski 1984) composition in cod stomachs in the southern Gulf of St. Lawrence; 37% of cod over 100 cm in length contained some plaice (highest predation on small plaice;	Hanson, J.M. and Chouinard, G.A. 2002. Diet of Atlantic cod in the southern Gulf of St Lawrence as an index of ecosystem change, 1959–2000. Journal of Fish Biology 60: 902–922. Powles, P.M. 1958a. Life history and ecology of American plaice (Hippoglossoides platessoides F.) in the

			Powles 1958a).	Magdalen Shallows. Journal Fisheries Research Board of Canada 22(2):565-598. Waiwood, K. and Majkowski, J. 1984. Food consumption and diet composition of cod, Gadus morhua, inhabiting the southwestern Gulf of St. Lawrence. Environmental Biology of Fishes Vol II 1:63-78.
Iceland	Atlantic cod	Capelin	Atlantic cod consume a mean of 27.1% (peak 40%) of capelin in their diet (by weight; primary fish prey) in Iceland.	Jaworski, A. and Ragnarsson, S.A. 2006. Feeding habits of demersal fish in Icelandic waters: a multivariate approach. ICES Journal of Marine Science 63: 1682-1694.
Irish Sea	Atlantic cod	European Plaice	European Plaice comprise from 2% (Mackinson and Daskalov 2007) to 20% (Daan 1973) of cod diet by weight in the North Sea.	Daan, N. 1973. A quantitative analysis of the food intake of North Sea cod, <i>Gadus</i> <i>morhua</i> . Netherlands Journal of Sea Research 6 (4): 479–517. Mackinson, S. and Daskalov, G, 2007. An ecosystem model of the North Sea to support an ecosystem approach to fisheries management: description and parameterisation. Sci. Ser. Tech Rep., Cefas Lowestoft, 142: 196pp.

Faroe Plateau; George's Bank (FO 5Zjm); Iceland; NE	Atlantic cod	Haddock	Haddock of all sizes make up 25- 40% of cod diet in North Sea (Daan 1973), and approximately 9% in the Gulf of St. Lawrence (Kabler and Eitzgerald 1960)	Daan, N. 1973. A quantitative analysis of the food intake of North Sea cod, <i>Gadus morhua</i> . Netherlands Journal of Sea Research 6 (4): 479–517.
Arene			(Komer and Fitzgeraid 1909).	Kohler, A.C., and Fitzgerald, D.N. 1969. Comparisons of Food of Cod and Haddock in the Gulf of St. Lawrence and on the Nova Scotia Banks. Journal Fisheries Research Board of Canada 26(5): 1273-128.
Baltic Area 30, 31 (ICES); Baltic Areas 25- 32; Iceland; Northern Irish Sea; North Sea	Atlantic cod	Herring	Cod have from 2-15% herring in their diet in the North Sea (Daan 1973).	Daan, N. 1973. A quantitative analysis of the food intake of North Sea cod, <i>Gadus</i> <i>morhua</i> . Netherlands Journal of Sea Research 6 (4): 479–517.
Gulf of Maine	Atlantic cod	Northern shrimp	Northern shrimp make up around 20% of cod diet, across size classes (Hanson and Chouinard 2002).	Hanson, J.M. and Chouinard, G.A. 2002. Diet of Atlantic cod in the southern Gulf of St Lawrence as an index of ecosystem change, 1959–2000. Journal of Fish Biology 60: 902–922.
North Sea	Atlantic cod	Norway pout	Norway pout comprise 6.7% of Atlantic cod diet in the North sea (Mackinson and Daskalov 2007).	Mackinson, S. and Daskalov, G, 2007. An ecosystem model of the North Sea to support an ecosystem approach to fisheries management: description and parameterisation. Sci. Ser. Tech Rep., Cefas Lowestoft, 142: 196pp.

FO 3NO	Atlantic cod	Redfish species	Redfish (all sizes) comprise 14% diet composition in cod stomachs near the Gulf of St. Lawrence (Kohler and Fitzgerald 1969), and while small redfish can make up <1% of cod diet by mass in the southern Gulf of St. Lawrence (Hanson and Chouinard 2002), cod over 50 cm near the Flemish Cap contained ~95% small redfish (Templeman 1965).	Hanson, J.M. and Chouinard, G.A. 2002. Diet of Atlantic cod in the southern Gulf of St Lawrence as an index of ecosystem change, 1959–2000. Journal of Fish Biology 60: 902–922 Kohler, A.C., and Fitzgerald, D.N. 1969. Comparisons of Food of Cod and Haddock in the Gulf of St. Lawrence and on the Nova Scotia Banks. Journal Fisheries Research Board of Canada 26(5): 1273- 1287
				Templeman, W. 1965. Some instances of cod and haddock behavior and concentrations in the Newfoundland and Labrador areas in relation to food. ICNAF Special Publication 6: 449-461.
North Sea	Atlantic cod	Sandeel	Sandeel can make up from 5% (Mackinson and Daskalov 2007) to 10% of adult cod diet by weight (Daan 1973).	Daan, N. 1973. A quantitative analysis of the food intake of North Sea cod, <i>Gadus</i> <i>morhua</i> . Netherlands Journal of Sea Research 6 (4): 479–517.
				Mackinson, S. and Daskalov, G, 2007. An ecosystem model of the North Sea to support an ecosystem approach to fisheries management: description and parameterisation. Sci. Ser. Tech Rep., Cefas Lowestoft, 142: 196pp.

Baltic Areas 22 and 24; Baltic Areas 25-32	Atlantic cod	Sprat	Sprat in cod diet can reach 20% by weight in the North Sea (Daan 1973).	Daan, N. 1973. A quantitative analysis of the food intake of North Sea cod, <i>Gadus</i> <i>morhua</i> . Netherlands Journal of Sea Research 6 (4): 479–517.
Georges Bank	Atlantic cod	White hake	White hake, all sizes, can make up 5% of cod over 60cm diet (Powles 1958b) or from 1-19% volume in stomachs of cod greater than 30cm in the Gulf of St. Lawrence.	Powles, P.M. 1958b. Studies of Reproduction and Feeding of Atlantic Cod (<i>Gadus callarias</i> L.) in the Southwestern Gulf of St. Lawrence. Journal Fisheries Research Board of Canada 15(6):1383- 1402.
FO 3NO; George's Bank, Gulf of Maine	Atlantic cod	Yellowtail Flounder	Pleuronectidae comprise from approximately 3% of cod diet by mass (Kohler and Fitzgerald 1969), 6-32% of cod diet by volume (Powles 1958b), and up to 40% composition (Waiwood and Majowski 1984) in the Gulf of St. Lawrence.	 Powles, P.M. 1958b. Studies of Reproduction and Feeding of Atlantic Cod (<i>Gadus callarias</i> L.) in the Southwestern Gulf of St. Lawrence. Journal Fisheries Research Board of Canada 15(6):1383- 1402. Kohler, A.C., and Fitzgerald, D.N. 1969. Comparisons of Food of Cod and Haddock in the Gulf of St. Lawrence and on the Nova Scotia Banks. Journal Fisheries Research Board of Canada 26(5): 1273- 1287.
				Waiwood, K. and Majkowski, J. 1984. Food consumption and diet composition of cod, <i>Gadus morhua</i> , inhabiting the southwestern Gulf of St. Lawrence. Environmental Biology of Fishes Vol II 1:63-78.

FO 5YZ (Gulf of Maine and George's Bank)	Atlantic Halibut	American Plaice	American Plaice less than 35cm make up to 13.6% of cod diet on the Newfoundland-Labrador Shelf (Bundy <i>et al.</i> 2000).	Bundy, A., Lilly, G.R., and Shelton, P.A. 2000. A mass balance model of the Newfoundland-Labrador Shelf. Can. Tech. Rep. Fish. Aquat. Sci. 2310:1-157.
FO 5Z (George's Bank)	Atlantic Halibut	Winter Flounder	Flounder has been reported as a main fish prey item of Atlantic halibut through stomach content analyses (Nickerson 1978). They make up from 4% ("flatfishes"; Kohler 1967) to 13.6% ("flounders" including witch flounder; Bundy <i>et al.</i> 2000) of halibut diet (also see Cargnelli et al. 1999).	 Bundy, A., Lilly, G.R., and Shelton, P.A. 2000. A mass balance model of the Newfoundland-Labrador Shelf. Can. Tech. Rep. Fish. Aquat. Sci. 2310:1-157. Kohler, A.C. 1967. Size at Maturity, Spawning Season, and Food of Atlantic Halibut. Journal Fisheries Research Board of Canada 24(1): 53-66. Nickerson, J.T.R. 1978. The Atlantic halibut and its utilization. Marine Fisheries Review 40(7): 21-25 Cargnelli, L.M., Griesbach, S.J., and Morse, W.W. 1999. Essential Fish Habitat Source Document: Atlantic Halibut, <i>Hippoglossus hippoglossus</i>, Life History and Habitat Characteristics. NOAA Technical Memorandum NMFS-NE-125: 1-17.
FO 5Y (Gulf of Maine)	Atlantic Halibut	Witch Flounder	Flounder has been reported as a main fish prey item of Atlantic halibut through stomach content analyses (Nickerson 1978). They make up from 4% ("flatfishes"; Kohler 1967) to 13.6% ("flounders" including witch	Bundy, A., Lilly, G.R., and Shelton, P.A. 2000. A mass balance model of the Newfoundland-Labrador Shelf. Can. Tech. Rep. Fish. Aquat. Sci. 2310:1-157. Kohler, A.C. 1967. Size at Maturity, Spawning Season, and Food of Atlantic Halibut. Journal Fisheries Research Board

			flounder; Bundy <i>et al.</i> 2000) of halibut diet (also see Cargnelli et al. 1999).	of Canada 24(1): 53-66. Nickerson, J.T.R. 1978. The Atlantic halibut and its utilization. Marine Fisheries Review 40(7): 21-25 Cargnelli, L.M., Griesbach, S.J., and Morse, W.W. 1999. Essential Fish Habitat Source Document: Atlantic Halibut, <i>Hippoglossus hippoglossus</i> , Life History and Histor Chemetersitica, NOAA
				and Habitat Characteristics. NOAA Technical Memorandum NMFS-NE-125: 1- 17.
FO 3LNO	Greenland halibut	Redfish species	Redfish species of all sizes make up approximately 25% of Greenland halibut diet on the Newfoundland-Labrador Shelf (Bundy <i>et al.</i> 2000).	Bundy, A., Lilly, G.R., and Shelton, P.A. 2000. A mass balance model of the Newfoundland-Labrador Shelf. Can. Tech. Rep. Fish. Aquat. Sci. 2310:1-157.
Iceland	Haddock	Capelin	Capelin make up to 15% of haddock diet by weight in Iceland (Jaworski and Ragnarsson 2006).	Jaworski, A. and Ragnarsson, S.A. 2006. Feeding habits of demersal fish in Icelandic waters: a multivariate approach. ICES Journal of Marine Science 63: 1682-1694.

West Coast of Vancouver Island	Pacific cod	Pacific herring	Pacific herring occur in Pacific cod diets with 43% frequency on average, with peak occurrences of 75-100% at some times of the year off the West Cost of Vancouver Island (Ware and McFarlane 1986).	Ware, D.M. and McFarlane, J.A. 1986. Relative impact of Pacific hake, sablefish and Pacific cod on west coast of Vancouver Island herring stocks. International North Pacific Fisheries Commission Bulletin 47: 67-78.
Prince Rupert District; Queen Charlotte Islands	Sablefish	Pacific herring	Pacific herring have been reported as the most important fish prey off the southwest coast of Vancouver Island, found in up to 20% of	Tanasichuk, R.W. 1997. Diet of sablefish, <i>Anoplopoma fimbria</i> , from the southwest coast of Vancouver Island. NOAA Technical Report NMFS 130: 93-97.
			stomachs (Tanasichuk 1997), and comprise of 6% of diet by weight off Vancouver Island's west coast (Ware and McFarlane 1986).	Ware, D.M. and McFarlane, J.A. 1986. Relative impact of Pacific hake, sablefish and Pacific cod on west coast of Vancouver Island herring stocks. International North Pacific Fisheries Commission Bulletin 47: 67-78.

317 318	References for Figure 1
319 320	1. Packer C, et al. (2005) Ecological Change, Group Territoriality, and Population Dynamics in Serengeti Lions. Science 307(5708):390–393.
321 322	2 COSEWIC (2013) COSEWIC assessment and status report on the Steller Sea Lion
323 324 325	Eumetopias jubatus in Canada. Committee on the Status of Endangered Wildlife in Canada. 54pp.
326 327 328	3. Cleary JS (2014) Stock assessment and management advice for British Columbia Pacific herring: 2013 status and 2014 forecast.
329 330 331 332	4. Holmengen N, Lehre Seip K, Boyce M, Stenseth NC (2009) Predator–prey coupling: interaction between mink Mustela vison and muskrat Ondatra zibethicus across Canada. Oikos 118(3):440–448.
333 334 335	References for Table 1
336 337 338	1. Frid A & Marliave J (2010) Predatory fishes affect trophic cascades and apparent competition in temperate reefs. Biology Letters 6(4):533-536.
339 340 341	2. Beaudreau AH & Essington TE (2007) Spatial, temporal, and ontogenetic patterns of predation on rockfishes by lingcod. Transactions of the American Fisheries Society 136(5):1438-1452.
342 343 344 345	3. Micheli F, Halpern BS, Botsford LW, & Warner RR (2004) Trajectories and correlates of community change in no-take marine reserves. Ecological Applications 14(6):1709-1723.
346 347 348 349	4. Breen PA, Hilborn R, Maunder MN, & Kim SW (2003) Effects of alternative control rules on the conflict between a fishery and a threatened sea lion (Phocarctos hookeri). Canadian Journal of Fisheries and Aquatic Sciences 60(5):527-541.
350 351 352 353 354	5. Harvey CJ, Gross K, Simon VH, & Hastie J (2008) Trophic and fishery interactions between Pacific hake and rockfish: effect on rockfish population rebuilding times. Marine Ecology Progress Series 365:165-176.
355 356 357 358	6. Essington TE, et al. (2012) Catch shares, fisheries, and ecological stewardship: a comparative analysis of resource responses to a rights - based policy instrument. Conservation Letters 5(3):186-195.
359 360 361	7. Lambeck RJ (1997) Focal species: a multi - species umbrella for nature conservation. Conservation biology 11(4):849-856.

362 363	8.] coi	Roberge J-M & Angelstam P (2004) Usefulness of the umbrella species concept as a nservation tool. Conservation Biology 18(1):76-85.
364 365 366 367	9.] val 76.	Rodrigues AS, Pilgrim JD, Lamoreux JF, Hoffmann M, & Brooks TM (2006) The ue of the IUCN Red List for conservation. Trends in Ecology & Evolution 21(2):71-
368 369 370	10. eff	Evans DM, et al. (2016) Species recovery in the united states: Increasing the ectiveness of the endangered species act.
371 372 373	11. Re	Schwartz MW (2008) The performance of the endangered species act. Annual view of Ecology, Evolution, and Systematics:279-299.
374 375 376	12. Re	Magera AM, Flemming JEM, Kaschner K, Christensen LB, & Lotze HK (2013) covery trends in marine mammal populations. PloS One 8(10):e77908.
377 378 379	13. Eco	Yodzis P (2001) Must top predators be culled for the sake of fisheries? Trends in plogy & Evolution 16(2):78-84.
380 381 382	14. to a	Kutil SM (2011) Scientific certainty thresholds in fisheries management: A response a changing climate. Enviornmental Law. 41:233.
383 384 385 386	15. for	Cury PM, et al. (2011) Global seabird response to forage fish depletion—one-third the birds. Science 334(6063):1703-1706.
387 388 389	Re 1.	ferences for Supplementary Information Reynolds, J. Conservation of Exploited Species. (Cambridge University Press, 2001).
390	2.	Hawkins, J. P. & Roberts, C. M. Effects of fishing on sex-changing Caribbean
391		parrotfishes. Biol. Conserv. 115, 213-226 (2004).
392	3.	Neubauer, P., Jensen, O. P., Hutchings, J. A. & Baum, J. K. Resilience and Recovery
393		of Overexploited Marine Populations. Science 340, 347-349 (2013).
394	4.	Hutchings, J. A. Collapse and recovery of marine fishes. Nature 406, 882-885
395		(2000).
396	5.	Zavaleta, E. et al. Ecosystem responses to community disassembly. Ann. N. Y. Acad.
397		<i>Sci.</i> 1162, 311–333 (2009).

398	6.	Fauchald, P. Predator-prey reversal: A possible mechanism for ecosystem hysteresis
399		in the North Sea? <i>Ecology</i> 91 , 2191–2197 (2010).

- 400 7. Walters, C. & Kitchell, J. F. Cultivation/depensation effects on juvenile survival and
- 401 recruitment: implications for the theory of fishing. *Can. J. Fish. Aquat. Sci.* 58, 39–50
 402 (2001).
- 403 8. Andersen, K. H. & Rice, J. C. Direct and indirect community effects of rebuilding
- 404 plans. ICES J. Mar. Sci. J. Cons. fsq035 (2010). doi:10.1093/icesjms/fsq035
- 405 9. De Roos, A. M. & Persson, L. Size-dependent life-history traits promote catastrophic
- 406 collapses of top predators. *Proc. Natl. Acad. Sci.* **99**, 12907–12912 (2002).
- 407 10. Price, J. E. & Morin, P. J. Colonization History Determines Alternate Community
- 408 States in a Food Web of Intraguild Predators. *Ecology* **85**, 1017–1028 (2004).
- 409 11. Kellner, J. B., Sanchirico, J. N., Hastings, A. & Mumby, P. J. Optimizing for multiple
- 410 species and multiple values: tradeoffs inherent in ecosystem-based fisheries
- 411 management. Conserv. Lett. (2010).
- 412 12. Costello, C., Kinlan, B. P., Lester, S. E. & Gaines, S. D. The Economic Value of
- 413 *Rebuilding Fisheries.* (Organisation for Economic Co-operation and Development,
- 414 2012).
- 415 13. Kasperski, S. Optimal Multi-species Harvesting in Ecologically and Economically
- 416 Interdependent Fisheries. *Environ. Resour. Econ.* 1–41 (2014). doi:10.1007/s10640417 014-9805-9
- 418 14. Pimm, S. L. & Lawton, J. H. Number of trophic levels in ecological communities.
- 419 *Nature* **268**, 329–331 (1977).

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-016-0068 | www.nature.com/natecolevol

- 420 15. Neubert, M. G. & Caswell, H. Alternatives to resilience for measuring the responses
- 421 of ecological systems to perturbations. *Ecology* **78**, 653–665 (1997).
- 422 16. McCann, K. S. Food Webs (MPB-50). (Princeton University Press, 2012).
- 423 17. Brown, C. J., Abdullah, S. & Mumby, P. J. Minimizing the Short-Term Impacts of
- 424 Marine Reserves on Fisheries While Meeting Long-Term Goals for Recovery.
- 425 *Conserv. Lett.* **8**, 180–189 (2015).