1	Appendix - Supplemental Methods and Results
2	
3	Trematode parasites exceed aquatic insect biomass in Oregon stream food webs
4	
5	Daniel L. Preston, Tamara J. Layden, Leah M. Segui, Landon P. Falke,
6	Sara V. Brant, Mark Novak
7	
8	Estimating catch efficiencies – We conducted mark-recapture surveys and three-pass
9	electrofishing at one reach in each stream (Oak, Soap, Berry) to estimate the catch efficiencies of
10	reticulate sculpin, cutthroat trout, Pacific giant salamanders, brook lamprey, and signal crayfish.
11	We set up block nets at the upstream and downstream ends of the reach (~ 45 m in reach length).
12	On the first day of each mark-recapture survey, we used three-pass electrofishing to capture all
13	five species with a four-person crew. We used a backpack electroshocker (Smith-Root LR20B),
14	a block net (1.0 x 1.0 m) and two dip nets (0.30 x 0.25 m) to collect fish, salamanders, and
15	crayfish. Each captured vertebrate was anesthetized with Aqui-S and then marked with a clip on
16	the tail fin or toe (for salamanders) using sterilized scissors. Crayfish were marked with a clip on
17	the telson. Lamprey were not marked. After a recovery period in aerated stream water, all
18	organisms were released. Twenty-four hours after the initial surveys, we re-surveyed each site
19	with single-pass electroshocking. For sculpin and trout, we followed Krebs (1989) to estimate
20	abundances within each habitat unit based on the number of fish marked on the first visit, the
21	total caught on the second visit, and the number marked on the second visit. For salamanders,
22	lamprey, and crayfish, the total captures were too low to generate mark-recapture estimates. For
23	these three taxa, we estimated abundances based on three-pass depletion estimates (Hauer and

Lamberti 2007). We used the 'FSA' package in R (Ogle 2017) to conduct the mark-recapture and
three-pass depletion analyses. The estimated catch efficiencies of single-pass electrofishing
based on these methods were 36% for sculpin; 44% for trout; 27.5% for salamanders; 47.6% for
crayfish; and 26.6% for lamprey. These capture efficiency estimates were then used to estimate
abundances of the five taxa in our field surveys based on the numbers captured.

29 *Trematode identifications* – All observed trematodes were grouped into cercarial 30 morphotypes and compared to local species from Juga snails described in the literature (Burns 31 and Pratt 1953, Bennington and Pratt 1960, Burns 1961, McCauley and Pratt 1961, Pratt and 32 McCauley 1961, Meade and Pratt 1965). For future studies, representative Juga snails and all the 33 trematodes sequenced were deposited as vouchers in the Museum of Southwestern Biology 34 (Hoberg et al., 2009; Holmes et al., 2016) and sequences were submitted to GenBank 35 (accession MW000373-MW000456). In addition to our morphological assessment, we 36 sequenced trematodes from two to five infected snails per observed morphotype. We used a 37 region of the nuclear rDNA 28S gene as a yardstick to determine trematode genetic diversity as a 38 proxy for species diversity. This region was chosen because a) the primers used work across a 39 wide range of digenean families and b) most of the digenean genetic diversity in the NCBI 40 GenBank sequence database has at least some stretch of 28S represented. To obtain genetic data 41 from the samples, DNA was extracted from 1-2 cercariae with the QIA amp DNA Micro Kit 42 (Qiagen, Valencia, California) according to manufacturer's guidelines, except samples were 43 eluted with 30ul of buffer. DNA was amplified by PCR (TaKara Ex Taq kit, Takara 44 Biomedicals, Otsu, Japan) and sequenced (about 900 bases of the 5' end of 28S) with previously 45 published primers (28S nDNA region primers U178 and L1642 Lockyer et al., 2003). PCR 46 products were purified with QIAQuick PCR Purification Kit (Qiagen, Valencia, USA) and

47 sequenced using the Applied Biosystems BigDye direct sequencing kit, version 3.1 (Applied 48 Biosystems, Foster City, CA, USA). Chromatograms were edited in Sequencher v 5.0 (Gene 49 Codes Corporation, Ann Arbor, MI, USA). All sequences were BLASTED to those taxa 50 available in the GenBank sequence database to assemble putative identifications. 51 The most common trematodes were members of the superfamily Microphalloidea, at least 52 some of which grouped with the family Lecithodendriidae based on the molecular data. 53 Morphologically, some of these cercariae were consistent with a species described as 54 Acanthatrium oregonense (Burns 1961), although the presence of at least three cryptic species 55 with similiar cercarial morphology is indicated by the molecular data. The cercariae that grouped 56 within the Hemiuroidea were morphologically consistent with the species *Deropegus aspina*, 57 which has been reported locally from Juga snails (McCauley and Pratt 1961, Law 1975). 58 Samples of trematodes in the genus *Plagioporus* were closely aligned with the recently described 59 P. hageli (99% similarity), although P. siliculus has also been recorded from Juga in our study 60 region and may also be present (Fayton and Andres 2016). Lastly, the Aporocotylid was very 61 consistent morphologically with the species Sanguinicola (=Cardicola) alseae, and probably 62 represents this taxon (Meade and Pratt 1965). Additional work describing the diversity of 63 trematodes from Juga snails would be useful to further clarify identities of the species observed 64 in our study. 65

Juga prey identification times – Detailed methods on estimating prey identification times are provided in Preston et al. 2017. Methods and results on *Juga* prey identification times in reticulate sculpin are provided in Preston et al. 2018. Here, we focus on feeding trials involving Pacific giant salamanders, which were not previously published. We did not derive a specific prey identification time function for trout. *Juga* snails were extremely rare in trout diets (5 snails

70 recovered from 479 trout) and we did not attempt to feed *Juga* snails to trout in the laboratory.
71 For this reason, we applied the mean prey identification time of snails in sculpin and salamanders
72 to the five *Juga* snails consumed by trout. Relative to variation driven by predator densities, prey
73 masses, and the number of prey consumed, applying this mean prey identification time to trout
74 prey should not have strongly affected the estimated biomass flows.

75 A total of 21 salamanders ranging from 51 to 157 mm in total body length (mean = 105 76 mm) were fed 109 Juga snails over multiple feeding trials. Each salamander was locally 77 collected from Berry, Oak, or Soap creeks and housed individually in a temperature controlled 78 room. For separate trials, the temperature was varied between 10.5°C and 18°C and the size of 79 Juga snails varied from 3 mm to 18.5 mm. The co-variates were varied in a continuous and 80 randomized manner across trials. The salamanders were lavaged between 20 and 100 hours post-81 feeding. We then fit Weibull survival curves to the observed prey status (identifiable or not) as a 82 function of the covariates (Klein and Moeschberger 2005, Kleinbaum and Klein 2006). We used 83 the Survival package in R (Therneau 2015). The estimated laboratory coefficients from the 84 Weibull survival functions were used with observed covariate information from our field surveys 85 (i.e. salamander and snail sizes and water temperatures) to estimate prey identification times for 86 each snail recovered from the salamander's stomach. For each snail, the identification time was 87 estimated as the mean of the probability density function that corresponded to the Weibull 88 survival function under the observed covariate values (Preston et al. 2017). We then used the 89 average Juga snail prey identification times within each survey to calculate the feeding rates 90 using eqn. 1.

91 The mean prey identification time of *Juga* snails in salamanders (i.e. the time at which
92 snails could no longer be recoverd from stomach contents) was 63 hours. As expected, increases

93 in water temperature, increases in predator size, and decreases in prey body size all decreased
94 prey identification times. The survival and density functions for prey identification times of *Juga*95 snails in salamanders under average co-variate values are shown in Fig. S7.

96 Juga growth rates – To quantify Juga snail growth rates, we deployed them into Oak 97 Creek for a period of 76 days (July 19 to Oct 3, 2018). The snails were marked using a numbered 98 label (3.2 x 1.6 mm) that was printed on weatherproof paper and then affixed to the shell of the 99 snail using Super Glue brand adhesive. Glue was applied beneath and above the label, forming a 100 protective coating. After marking, snails were provided a recovery period in stream water and then deployed into the cages. Stream cages were 0.5 m² in area and were constructed of a 101 102 rectangular PVC plastic frame that was covered in plastic mesh (2 mm openings). We deployed 103 40 snails in each of 5 cages, which is on the low end of the observed snail densities in Berry, 104 Oak, and Soap Creeks. Snails were measured for total shell length, operculum diameter, and wet 105 mass before and after being deployed in the stream cages. At the beginning of the deployment 106 period, snails ranged in total length from 7 to 27 mm.

107 All of the marked snails survived the duration of the caging study. We found that the 108 labelling method resulted in ~60% of the labels remaining attached and legible after the 109 deployment period. Growth rate estimates were therefore based on 126 of the 200 snails. We 110 adjusted the estimated snail ages from the growth rate function to account for a lack of growth 111 over four winter months each year, which is observed in natural Juga populations (Furnish 112 1989). The oldest individuals in the populations were estimated to be \sim 7 years in age, 113 corresponding with previous estimates of the maximum lifespan for Juga snails (Diamond 1982). 114 Growth rates decreased with increasing snail size. On average, snails increased by 3.18 mg day⁻¹ g^{-1} wet mass and 9.4 x 10⁻⁴ mm day⁻¹ mm⁻¹ shell length. We also compared the *in situ* snail 115

116	growth rate estimates from cages with previously published values, which were similar (Earnest
117	1967, Diamond 1982, Furnish 1989).
118	
119	References
120	Baumgärtner, D., and KO. Rothhaupt. 2003. Predictive length-dry mass regressions for
121	freshwater invertebrates in a pre-alpine lake littoral. International Review of
122	Hydrobiology 88:453–463.
123	Benke, A. C., A. D. Huryn, L. A. Smock, and J. B. Wallace. 1999. Length-mass relationships for
124	freshwater macroinvertebrates in North America with particular reference to the
125	southeastern United States. Journal of the North American Benthological Society
126	18:308–343.
127	Bennington, E., and I. Pratt. 1960. The life history of the salmon-poisoning fluke, Nanophyetus
128	salmincola (Chapin). The Journal of Parasitology 46:91-100.
129	Burns, W. C. 1961. Six virgulate xiphidiocercariae from Oregon, including redescriptions of
130	Allassogonoporus vespertilionis and Acanthatrium oregonense. The Journal of
131	Parasitology 47:919–925.
132	Burns, W. C. and Pratt, I. 1953. The life cycle of Metagonimoides oregonensis Price (Trematoda:
133	Heterophyidae). The Journal of Parasitology 39:60-69.
134	Diamond, J. M. 1982. Stream geomorphology and benthic habitat predictability as
135	determinants of the population dynamics and life history of the snail Juga plicifera.
136	Journal of Freshwater Ecology 1:577–588.
137	Earnest, R. D. 1967. Production of the snail Oxytrema silicula (Gould) in an experimental
138	stream. Masters Thesis. Oregon State University.

139	Fayton, T. J., and M. J. Andres. 2016. New species of <i>Plagioporus</i> Stafford, 1904 (Digenea:
140	Opecoelidae) from California, with an amendment of the genus and a phylogeny of
141	freshwater plagioporines of the Holarctic. Systematic Parasitology 93:731-748.
142	Furnish, J. L. 1989. Factors affecting the growth, production and distribution of the stream snail
143	Juga silicula (Gould). PhD Dissertation. Oregon State University.
144	Ganihar, S. R. 1997. Biomass estimates of terrestrial arthropods based on body length. Journal of
145	Biosciences 22:219–224.
146	Hauer, F. R., and G. A. Lamberti. 2011. Methods in stream ecology. Academic Press.
147	Hoberg E. P., P. A. Pilitt and K. E. Galbreath. 2009. Why museums matter: a tale of pinworms.
148	(Oxyuroidea: Heteroxynematidae) among pikas (Ochotona princeps and O. collaris) in
149	the American West. Journal of Parasitology 95: 490-501.
150	Holmes, M. W., T. T. Hammond, G. O. U. Wogan, R. E. Walsh, K. Labarbera, E. A. Wommack,
151	F. M. Martins, J. C. Crawford, K. L. Mack, L. M. Block and M. I. W. Nachman. 2016.
152	Natural history collections as windows on evolutionary processes. Molecular Ecology 25:
153	864–81.
154	Klein, J. P., and M. L. Moeschberger. 2005. Survival Analysis: Techniques for Censored and
155	Truncated Data. Springer Science & Business Media. New York, NY.
156	Kleinbaum, D. G., and M. Klein. 2006. Survival analysis: A Self-learning Text. Springer Science
157	& Business Media. New York, NY.
158	Krebs, C. J. 1989. Ecological Methodology. Harper & Row Publishers. New York, NY.
159	Law, D. TH. 1975. Studies on some digenetic trematodes from Ritner Creek, Polk County,
160	Oregon. PhD Dissertation. Oregon State University.

161	Lockyer, A. E., P. D. Olson, P. Østergaard, D. Rollinson, D. A. Johnston, S. W. Attwood, V. R.
162	Southgate, P. Horak, S. D. Snyder, T. H. Le, T. Agatsuma, D. P. Mcmanus, A. C.
163	Carmichael, S. Naem and D. T. J. Littlewood. 2003. The phylogeny of the
164	Schistosomatidae based on three genes with emphasis on the interrelationships of
165	Schistosoma Weinland, 1858. Parasitology 126:203-224.
166	McCauley, J. E., and I. Pratt. 1961. A new genus Deropegus with a redescription of D. aspina
167	(Ingles, 1936) nov. comb. Transactions of the American Microscopical Society 80:373-
168	377.
169	Meade, T. G., and I. Pratt. 1965. Description and life history of Cardicola alseae sp. n.
170	(Trematoda: Sanguinicolidae). The Journal of Parasitology 51:575–578.
171	Miserendino, M. L. 2001. Length-mass relationships for macroinvertebrates in freshwater
172	environments of Patagonia (Argentina). Ecología Austral 11:3-8.
173	Ogle, D.H. 2017. FSA: Fisheries Stock Analysis. R package version 0.8.17.
174	Pratt, I., and J. E. McCauley. 1961. Trematodes of the Pacific Northwest. An annotated catalog.
175	Oregon State University Press. Corvallis, OR.
176	Preston, D. L., J. S. Henderson, L. P. Falke, and M. Novak. 2017. Using survival models to
177	estimate invertebrate prey identification times in a generalist stream fish. Transactions of
178	the American Fisheries Society 146:1303-1314.
179	Preston, D. L., J. S. Henderson, L. P. Falke, L. M. Segui, T. J. Layden and M. Novak. 2018.
180	What drives interaction strengths in complex food webs? A test with feeding rates of a
181	generalist stream predator. Ecology 99: 1591–1601.
182	Therneau T (2015). A Package for Survival Analysis in S. version 2.38, https://CRAN.R-
183	project.org/package=survival.

- 184 Towers, D. J., I. M. Henderson, and C. J. Veltman. 1994. Predicting dry weight of New Zealand
- 185 aquatic macroinvertebrates from linear dimensions. New Zealand Journal of Marine and
 186 Freshwater Research 28:159–166.

Table S1. Stream organisms observed in field surveys in Oak, Soap, and Berry Creeks. The 'Regression Applied' and 'Source' columns indicate where the equations to estimate dry mass originated for each taxon. In some cases, equations from closely related taxa or higher taxonomic levels (i.e. Order) were applied. The 'Equation' column provides the estimated dry mass based on either body size in mm (L) or wet mass in grams (WM). Estimated dry masses from the equations are in milligrams for benthic invertebrates and grams for salamanders, sculpin, and trout. This table was modified from Preston et al. 2018.

Order	Family	Life Stage	Regression Applied	Equation	Source
Achatinoidea Semisulcospiridae Juvenil		Juvenile	Species (Juga plicifera)	0.00002*L^2.6534	Preston et al. 2018
Amphipoda			Order (Amphipoda)	0.0058*L^3.015	Benke et al. 1999
Annelida			Family (Lumbriculidae)	exp(-9.19+3.25*log(L))	Miserendino 2001
Araneae			Family (Elmidae)	0.0074*L^2.879	Benke et al. 1999
Bivalve			Species (Juga plicifera)	0.00002*L^2.6534	Preston et al. 2018
Coleoptera		Adult	Order (Coleoptera)	exp(-2.0076+3.2271*log(L))	Towers et al. 1994
Coleoptera	Elmidae	Adult	Family (Elmidae)	exp(-2.0076+3.2271*log(L))	Towers et al. 1994
Coleoptera	Elmidae	Larvae	Family (Elmidae)	0.0074*L^2.879	Benke et al. 1999
Collembola			Order (Collembola)	exp(-1.8749+2.3002*log(L))	Ganihar 1997
Copepod			Order (Amphipoda)	0.0058*L^3.015	Benke et al. 1999
Decapoda	Astacidae		Species (Pacifastacus leniusculus)	WM*0.28	This study
Diptera		Adult	Order (Diptera)	0.0025*L^2.692	Benke et al. 1999
Diptera	Athericidae	Larvae	Family (Athericidae)	0.004*L^2.586	Benke et al. 1999
Diptera	Cecidomyiidae	Larvae	Order (Diptera)	0.0025*L^2.692	Benke et al. 1999
Diptera	Ceratopogonidae	Larvae	Family (Ceratopogonidae)	0.0025*L^2.469	Benke et al. 1999
Diptera	Chironomidae	Larvae	Family (Chironomidae)	0.0018*L^2.617	Benke et al. 1999
Diptera	D023	Adult	Order (Diptera)	0.0025*L^2.692	Benke et al. 1999
Diptera	Dixidae	Larvae	Family (Dixidae)	0.0025*L^2.692	Benke et al. 1999
Diptera	Empididae	Larvae	Family (Empididae)	0.0054*L^2.546	Benke et al. 1999
Diptera		Larvae	Order (Diptera) Family	0.0025*L^2.692	Benke et al. 1999
Diptera	Pelecorhynchidae	Larvae	(Pelecorhynchidae)	0.0025*L^2.692	Benke et al. 1999
Diptera	Psychodidae	Larvae	Family (Psychodidae)	0.0025*L^2.692	Benke et al. 1999

Diptera	Ptychopteridae	Larvae	Family (Ptychopteridae)	0.0025*L^2.692	Benke et al. 1999
Diptera		Pupae	Order (Diptera)	0.0025*L^2.692	Benke et al. 1999
Diptera	Simuliidae	Larvae	Family (Simuliidae)	0.002*L^3.011	Benke et al. 1999
Diptera	Stratiomyidae	Larvae	Order (Diptera)	0.0025*L^2.692	Benke et al. 1999
Diptera	Tanyderidae	Larvae	Order (Diptera)	0.0025*L^2.692	Benke et al. 1999
Diptera	Tipulidae	Larvae	Family (Tipulidae)	0.0029*L^2.681	Benke et al. 1999
Ephemeroptera		Adult	Order (Ephemeroptera)	0.0071*L^2.832	Benke et al. 1999
Ephemeroptera	Ameletidae	Larvae	Family (Ameletidae)	0.0077*L^2.588	Benke et al. 1999
Ephemeroptera	Baetidae	Larvae	Family (Baetidae)	0.0053*L^2.875	Benke et al. 1999
Ephemeroptera	Ephemerellidae	Larvae	Family (Ephemerellidae)	0.0103*L^2.676	Benke et al. 1999
Ephemeroptera	Heptageniidae	Larvae	Family (Heptageniidae)	0.0108*L^2.754	Benke et al. 1999
Ephemeroptera	Leptophlebiidae	Larvae	Family (Leptophlebiidae)	0.0047*L^2.686	Benke et al. 1999
Ephemeroptera	Potamanthidae	Larvae	Family (Potamanthidae)	0.0056*L^2.839	Benke et al. 1999
Hemiptera			Order (Hemiptera)	0.0108*L^2.734	Benke et al. 1999
Hemiptera	Gerridae		Family (Gerridae)	0.015*L^2.596	Benke et al. 1999
Hemiptera	Mesoveliidae		Family (Mesoveliidae)	0.0108*L^2.734	Benke et al. 1999
Hemiptera	Saldidae		Order (Hemiptera)	0.0108*L^2.734	Benke et al. 1999
Hemiptera	Veliidae		Family (Veliidae)	0.0126*L^2.719	Benke et al. 1999
Hydracharina			Order (Hydracharina)	exp(-2.02+1.66*log(L))	Baumgartner and Rothhaup 2003
Isopoda			Order (Amphipoda)	0.0058*L^3.015	Benke et al. 1999
Lepidoptera			Order (Diptera)	0.0025*L^2.692	Benke et al. 1999
Megaloptera	Sialidae	Larvae	Order (Megaloptera)	0.0037*L^2.838	Benke et al. 1999
Neuroptera			Order (Megaloptera)	0.0037*L^2.838	Benke et al. 1999
Odonata	Gomphidae	Larvae	Family (Gomphidae)	0.0088*L^2.787	Benke et al. 1999
Ostracoda			Order (Amphipoda)	0.0058*L^3.015	Benke et al. 1999
Plecoptera		Adult	Order (Plecoptera)	0.0094*L^2.754	Benke et al. 1999
Plecoptera	Capnidae	Larvae	Order (Plecoptera)	0.0094*L^2.754	Benke et al. 1999
Plecoptera	Chloroperlidae	Larvae	Family (Chloroperlidae)	0.0065*L^2.724	Benke et al. 1999

Plecoptera		Larvae	Order (Plecoptera)	0.0094*L^2.754	Benke et al. 1999
Plecoptera	Leuctridae	Larvae	Order (Plecoptera)	0.0094*L^2.754	Benke et al. 1999
Plecoptera	Nemouridae	Larvae	Family (Nemouridae)	0.0056*L^2.762	Benke et al. 1999
Plecoptera	Peltoperlidae	Larvae	Family (Peltoperlidae)	0.0170*L^2.737	Benke et al. 1999
Plecoptera	Perlidae	Larvae	Family (Perlidae)	0.0099*L^2.879	Benke et al. 1999
Plecoptera	Perlodidae	Larvae	Family (Perlodidae)	0.0196*L^2.742	Benke et al. 1999
Plecoptera	Pteronarcyidae	Larvae	Family (Pteronarcyidae)	0.0324*L^2.573	Benke et al. 1999
Salmoniformes	Salmonidae		Family (Salmonidae)	WM*0.21	Lantry and O'Gorman 2007
Scorpaeniformes	Cottidae		Species (Cottus perplexus)	WM*0.24	Lantry and O'Gorman 2007
Thysanoptera		Adult	Order (Diptera)	0.0025*L^2.692	Benke et al. 1999
Trichoptera	Calamoceratidae	Larvae	Family (Calamoceratidae)	0.0056*L^2.839	Benke et al. 1999
Trichoptera	Glossosomatidae	Larvae	Family (Glossosomatidae)	0.0082*L^2.958	Benke et al. 1999
Trichoptera	Hydropsychidae	Larvae	Family (Hydropsychidae)	0.0046*L^2.926	Benke et al. 1999
Trichoptera		Larvae	Order (Trichoptera)	0.0056*L^2.839	Benke et al. 1999
			Family		
Trichoptera	Lepidostomatidae	Larvae	(Lepidostomatidae)	0.0079*L^2.649	Benke et al. 1999
Trichoptera	Philopotamidae	Larvae	Order (Trichoptera)	0.0056*L^2.839	Benke et al. 1999
		Ŧ	Family	0.004541.40.505	D 1 1 1000
Trichoptera	Polycentropodidae	Larvae	(Polycentropodidae)	0.0047*L^2.705	Benke et al. 1999
Trichoptera	Rhyacophilidae	Larvae	Family (Rhyacophilidae)	0.0099*L^2.48	Benke et al. 1999
Urodela	Ambystomatidae	Larvae	Family (Salamandridae)	WM*0.14	Preston et al. 2012

Stroom	Dooch	Juga	Infection	Juga Shell Length (mm)			
Sueam	Reach	Dissected	Prevalence (%)	Mean	St. Dev.	Min.	Max.
Berry	1	245	6.1	12.5	4.1	4	24
Berry	2	194	7.2	13.7	3.9	4	25
Berry	3	106	17.0	13.7	4.6	4	30
Oak	1	126	25.4	14.8	5.7	5	31
Oak	2	119	17.6	15.8	5.1	5	29
Oak	3	132	22.7	15.9	5.0	1	25
Soap	1	112	25.9	16.2	5.1	5	30
Soap	2	133	32.3	14.2	5.4	4	26
Soap	3	195	45.1	16.3	5.3	4	26

Table S2. *Juga* dissected in each stream reach from Berry, Oak, and Soap creeks. The number of snails dissected per reach, trematode infection prevalence, and the minimum, maximum, mean, and standard deviation of the shell sizes of dissected individuals are provided in the table.

Table S3. Trematode voucher numbers in the Museum of Southwestern Biology and GenBank accession numbers for samples that were sequenced. The samples sequenced were collected in the focal study streams (Oak, Soap or Berry Creeks) for five of the morphotypes observed in the current study. One of the trematodes was very rare at the study streams and the sequence data came from samples collected at other streams within the Willamette Valley (Aporocotylidae).

Taxon	MSB Catalog No.	GenBank Accession	Stream	Lat	Long
Hemiuroidea	MSB:Para:30782	MW000382	Oak Creek	44.6069752	-123.33222
Hemiuroidea	MSB:Para:25351	MW000454	Soap Creek	44.642105	-123.31421
Hemiuroidea	MSB:Para:25355	MW000448	Soap Creek	44.642105	-123.31421
Metagonimoides	MSB:Para:30734	MW000402	Oak Creek	44.5596773	-123.28926
Metagonimoides	MSB:Para:25352	MW000455	Soap Creek	44.642105	-123.31421
Metagonimoides	MSB:Para:25353	MW000456	Soap Creek	44.642105	-123.31421
Metagonimoides	MSB:Para:25354	MW000447	Soap Creek	44.642105	-123.31421
Microphalloidea	MSB:Para:25350	MW000453	Oak Creek	44.601473	-123.33466
Microphalloidea	MSB:Para:30756	MW000411	Oak Creek	44.6069752	-123.33222
Microphalloidea	MSB:Para:30757	MW000412	Oak Creek	44.6069752	-123.33222
Microphalloidea	MSB:Para:30820	MW000415	Soap Creek	44.64244	-123.33031
Nanophyetus	MSB:Para:25349	MW000452	Oak Creek	44.601473	-123.33466
Nanophyetus	MSB:Para:30755	MW000374	Oak Creek	44.5596773	-123.28926
Nanophyetus	MSB:Para:25356	MW000449	Soap Creek	44.642105	-123.31421
Nanophyetus	MSB:Para:30766	MW000375	Soap Creek	44.64244	-123.33031
Plagioporus	MSB:Para:25357	MW000450	Soap Creek	44.642105	-123.31421
Plagioporus	MSB:Para:25358	MW000451	Berry Creek	44.707344	-123.29873
Aporocotylidae	MSB:Para:30742	MW000445	King Creek	44.1617371	-122.16854
Aporocotylidae	MSB:Para:30749	MW000441	Hills Creek	43.9878153	-122.8233
Aporocotylidae	MSB:Para:30751	MW000446	Dell Creek	43.7860451	-122.54838
Aporocotylidae	MSB:Para:30792	MW000444	Hills Creek	43.9878153	-122.8233
Aporocotylidae	MSB:Para:30799	MW000442	Taylor Creek	44.0718429	-122.75116
Aporocotylidae	MSB:Para:30800	MW000443	McKenzie River	44.0558698	-122.82871

Table S4. Sample sizes of Juga snails dissected for biomass quantification of five trematode
taxa. The mean snail size and the percentage of trematode tissue per taxon are shown. A sixth
trematode taxon (Aporocotylidae) was extremely rare and was not quantified for trematode
biomass.

Taxon	Juga Dissected	Mean Snail Size (mm) (+/- SE)	Mean % Trematode Tissue (+/- SE)
Plagioporus	2	18.5 (+/- 0.50)	17.8 (+/- 0.14)
Hemiuroidea	16	20.4 (+/- 0.41)	28.1 (+/- 2.1)
Microphalloidea	21	22.6 (+/- 0.61)	31.0 (+/- 1.7)
Nanophyetus	19	22.4 (+/- 0.65)	33.7 (+/-2.4)
Metagonimoides	17	23.7 (+/- 1.00)	45.0 (+/- 2.9)

Table S5. Effects of varying the estimates of snail age on the transfer of biomass from snails to trematodes. The top row presents the estimated mean across all three streams based on the original function to estimate snail age. The rows below show estimates when snails ages are adjusted by +/-1 standard deviation, +/-2 standard deviations, and +/-3 standard deviations. The standard deviation is based on the mean estimated snail ages in each of the nine stream reaches.

Snail Age Variation	Snail Transfer to Trematodes (g m ⁻² yr ⁻¹)
None	0.384
1 SD	0.277 to 0.514
2 SD	0.192 to 0.664
3 SD	0.131 to 0.834

Table S6. Force of infection models, AIC values, and model parameters that were estimated from functions fit to the *Juga* snail age-prevalence data in each stream. The Weibull model provided the best relative performance of the candidate models for all streams.

Model	Stream	AIC	Alpha (hazard)	Beta
Exponential	Soap	453.6	0.20	na
Weibul	Soap	412.6	0.27	2.30
Loglogistic	Soap	415.9	0.33	3.01
Exponential	Oak	328.2	0.11	na
Weibul	Oak	295.1	0.21	2.61
Loglogistic	Oak	300.2	0.24	3.05
Exponential	Berry	284.1	0.05	na
Weibul	Berry	261.7	0.20	2.99
Loglogistic	Berry	263.5	0.22	3.16

Figure S1. Infection hazards from exponential, Weibull, and log-logistic models that were fit to the age-prevalence data. The Weibul model (center) provided the best relative fit (lowest AIC) and indicated that infection risk increased with snail age at all streams.

Figure S2. Trematode community composition across the three streams. Total numbers of infected snails were 47 of 545 (Berry), 83 of 377 (Oak), and 160 of 440 (Soap).

Figure S3. Age-prevalence curves for the snail dissected from each of the three streams.

Figure S4. Trematode biomass as a proportion of individual *Juga* host snail tissue biomass. The blue points indicate the mean proportional trematode biomass and the points are individual biomasses from each snail dissected. Proportions exclude the mass of the snail shell. Sample sizes of infected snails that were dissected for trematode biomass quantification are as follows: *Plagioporus* (n = 2), Hemiuroidea (n = 16), Microphalloidea (n = 21), *Nanophyetus* (n = 19), *Metagonimoides* (n = 17).

Figure S5. Proportional trematode biomass per host as a function of host snail size (n = 75 snail dissected from 5 trematode taxa).

Figure S6. Trematode biomass density per stream reach plotted against snail population characteristics, including mean snail shell size (A), mean snail density (B), and mean snail biomass (C).

Fig. S7. Survival and probability density functions for prey identification times of *Juga* snails consumed by Pacific giant salamanders (times in hours in shown on the x-axis). The functions shown include mean covariate values for water temperature, snail size and salamander size based on the laboratory feeding trials. The mean prey identification time was 63 hours