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Multi-prey functional response model

Derivations

More explicit derivations of the Type II and multi-prey models are as follows.

Holling Type II model

Assuming a predator population P of fixed size that is composed of only PS searching and PH

handling sub-populations, let the rate of change in abundance of the two sub-populations be
described by

dPS

dt
= →aNPS + 1

h
PH (S.1a)

dPH

dt
= aNPS → 1

h
PH . (S.1b)

Correspondingly, the rate at which eaten prey Ne are generated is

dNe

dt
= 1

h
PH . (S.2)

As in the main text, a is the per capita attack rate, h the handling time, and N the prey’s
abundance (which is also assumed fixed at the behavioral time scale we are considering).

Setting dPH

dt
= 0 (i.e. assuming steady state conditions), we substitute (P → PH) for PS and

rearrange to determine the proportion of the whole population that is busy handling:

aN(P → PH) = 1
h
PH (S.3a)

=↑ aNP = aNPH + 1
h
PH (S.3b)

= (aN + 1
h
)PH (S.3c)

=↑ PH

P
=

aN

aN + 1
h

(S.3d)

=
ahN

1 + ahN
. (S.3e)

The total number of handling predators is thus

PH =
ahNP

1 + ahN
. (S.4)

Since the rate at which each of these PH predators finishes handling its prey is 1
h
, it follows that

the rate at which eaten prey are “generated” by the whole predator population is

dNe

dt
=

1

h
PH =

aNP

1 + ahN
(S.5)

and thus that the per predator feeding rate (the functional response) is

f(N) =
1

P

dNe

dt
=

1

h

PH

P
=

aN

1 + ahN
. (S.6)
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Multi-prey model

Again assume a predator population P of fixed size that is composed of PS searching and
handling sub-populations, but now split handling predators into those capable of searching
while handling less than n prey individuals at any moment time. We therefore have that

P = PS + PH1 + PH2 + . . .+ PHn
(S.7)

and describe the rate of change for each sub-populations by

dPS

dt
= →aNPS + 1

h
PH1 (S.8a)

dPH1

dt
= aNPS → 1

h
PH1 (S.8b)

dPH2

dt
= aNPH1 → 1

h
PH2 (S.8c)

...

dPHn

dt
= aNPH(n→1)

→ 1
h
PHn

. (S.8d)

Correspondingly, the rate at which eaten prey Ne are generated is now

dNe

dt
= 1

h

n∑

i=1

PHi
. (S.9)

By setting
dPHi

dt
= 0 for all sub-populations, rearranging, and iteratively substituting, we have

that

aNPS = 1
h
PH1 =↑ PH1 = ahNPS (S.10a)

aNPH1 = 1
h
PH2 =↑ PH2 = ahNPH1 (S.10b)

= ahN(ahNPS) (S.10c)

= (ahN)2PS (S.10d)

aNPH2 = 1
h
PH3 =↑ PH3 = ahNPH2 (S.10e)

= ahN((ahN)2PS) (S.10f)

= (ahN)3PS (S.10g)

...

aNPH(n→1)
= 1

h
PHn

=↑ PHn
= ahNPH(n→1)

(S.10h)

= ahN((ahN)n→1PS) (S.10i)

= (ahN)nPS , (S.10j)
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with the last lines for PHn
inferred by induction. The proportional abundance of each ith

sub-population is thus

PHi

P
=

(ahN)iPS

P
(S.11a)

=
(ahN)iPS

PS + PH1 + PH2 + . . .+ PHn

(S.11b)

=
(ahN)iPS

PS + ahNPS + . . .+ (ahN)nPS

(S.11c)

=
(ahN)i

1 + ahN + . . .+ (ahN)n
(S.11d)

=
(ahN)i

1 +
n∑

k=1
(ahN)k

. (S.11e)

Each of the sub-populations generates eaten prey at rate 1
h
, thus the rate at which eaten prey

are generated by the whole population is

dNe

dt
= 1

h

n∑

i=1

PHi
(S.12a)

= 1
h

n∑

i=1

PHi

P
P (S.12b)

= 1
h

n∑

i=1

(ahN)i

1 +
n∑

k=1
(ahN)k

P (S.12c)

=

1
h

n∑
i=1

(ahN)i

1 +
n∑

i=1
(ahN)i

P . (S.12d)

The per predator feeding rate is therefore

f(N) =
1

P

dNe

dt
=

1
h

n∑
i=1

(ahN)i

1 +
n∑

i=1
(ahN)i

(S.13)

as given in eqn. 4 of the main text.
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Proportion of predators feeding on 1 to n prey
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Figure S.1: The expected proportions of predator individuals that will be observed not feeding

or handling i = 1, 2, 3 or 4 prey changes with prey abundance (here visualized for a predator

population whose individuals can handle up to n = 4 prey at a time). Individuals from each of

the handling groups consumes prey at rate 1/h, thus the predator population’s (i.e. the average

individual’s) functional response is the product of 1/h and the sum of these handling-predator

proportions. The prey abundance at which the expected proportions of individuals handling 0,

1, 2, 3 or 4 prey are all equal occurs at prey abundance 1/ah. Parameter values: the attack

rate is a = 0.1 and the handling time is h = 4.
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Equivalence of eqns. 4 and 5 for integer values of n

Letting n = 1, we have

f(N) =
aN(1→ (ahN)n)

1→ (ahN)n+1
=

aN(1→ (ahN))

1→ (ahN)2
=

aN(1→ ahN)

12 → (ahN)2

=
aN(1→ ahN)

(1 + ahN)(1→ ahN)

=
aN

1 + ahN
.

Letting n = 2, we have

f(N) =
aN(1→ (ahN)n)

1→ (ahN)n+1
=

aN(1→ (ahN)2)

1→ (ahN)3
=

aN(1 + ahN)(1→ ahN)

(1 + ahN + (ahN)2)(1→ ahN)

=
aN(1 + ahN)

1 + ahN + (ahN)2

=

1
h

2∑
i=1

(ahN)i

1 +
2∑

i=1
(ahN)i

.

Letting n = 3, we have

f(N) =
aN(1→ (ahN)n)

1→ (ahN)n+1
=

aN(1→ (ahN)3)

1→ (ahN)4
=

aN(1 + ahN + (ahN)2)(1→ ahN)

(1 + ahN + (ahN)2 + (ahN)3)(1→ ahN)

=
aN(1 + ahN + (ahN)2)

1 + ahN + (ahN)2 + (ahN)3)

=

1
h

3∑
i=1

(ahN)i

1 +
3∑

i=1
(ahN)i

.

Their equivalence for higher integer values of n follows similarly.
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Analysis of FoRAGE datasets

Data exclusions and re-scaling

The most recent version of FoRAGE (v.4, Coblentz et al., 2025) contains a total of 3013 datasets
from which we excluded 422 for our analyses. Most of these were excluded because they entailed
less than 4 prey-abundance treatment levels or because they had fewer than 15 data points
(i.e. replicates) overall, but we also excluded several datasets because they provided prey abun-
dances as densities for treatments that were implemented using arenas of varying size without
specifying what those arena sizes were; entailed feeding rates of a variable but unspecified num-
ber of predators known to exhibit predator-dependent feeding rates; and/or entailed feeding
rates of variable but unspecified experimental duration. Nine datasets were excluded because
our models failed to reach convergence.

Our analyses required integer counts of prey abundance and eaten prey because we assumed
binomial and Poisson likelihood functions to accommodate the increasing variance that accom-
panies an increase in the expected number of eaten prey (Novak and Stou!er, 2021b). For most
datasets in which prey abundances were expressed as prey densities and/or predation was ex-
pressed as feeding rates, integer counts of prey abundance and prey eaten could be calculated
using provided information on the area size(s) used (area or volume), the number of predators
per treatment, and experimental duration(s). For raw-data datasets where this information
was not provided, as well as datasets expressing densities and feeding rates on a mass basis
(e.g., micro-grams of prey available or eaten), we (i) multiplied prey densities by the minimum
scalar value necessary to obtain integer values across all prey densities (which we then used as
prey abundance counts), and (ii) multiplied prey feeding rates by the minimum scalar value
necessary to obtain integer values across all feeding rates (which we then used as counts of
prey eaten). We multiplied prey abundances by an additional minimum scalar value for non-
replacement datasets (reported as raw-data or as means) where the units in which densities and
feeding rates were measured caused there to be more prey eaten than were seemingly available.
Although these procedures will have altered the interpretation of the attack rate and handling
time parameters (i.e. our estimates of a and h are not comparable across datasets), neither pro-
cedure will have a!ected our estimates of n for the multi-prey model (because it is dimensionless)
except, potentially, through an influence on the variance of the likelihood models (larger counts
of prey eaten being permitted a higher variance than low counts of prey eaten). Although we
did not observe any relationship between estimates of n and the magnitudes of re-scaling across
our datasets, its potential influence is worthy of future analytical study.

Penalized likelihood

Many datasets were not su”ciently informative to constrain estimates of n and ω. We therefore
implemented a penalized likelihood approach, augmenting the two aforementioned likelihood
functions with a penalty term proportional to the values of n and ω to discourage large values
of n and ω. More specifically, we performed model fitting using

Lp = L+ ε · ln(n) + ε · ln(ω) (S.14)

as the loss function, where L is the negative log-likelihood and ε determines the strength of
the penalty for values of n and ω. Although it is possible to treat ε as a free parameter that
is estimated for each dataset, we set ε = 1/ ln(20). A value of n or ω equal to 20 therefore
penalized the negative log-likelihood by 1 unit (equivalent to 1/2 the penalty associated with
each parameter of a model under AIC).
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Supplementary figures and statistical tables

(a) Insects (b) Arachnids

(c) Crustaceans (d) Fishes

Figure S.2: Venn diagrams categorizing the datasets of the four most common predator groups
by their support for one or more of the considered models based on their BIC scores.
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Figure S.3: Cumulative probability distribution of the estimates of n (assuming the multi-
prey model) from across all datasets excluding those for which the linear Type I model alone
performed best.
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Figure S.4: Cumulative probability distribution of the estimates of ω (assuming the Holling-Real
Type III model) from across all datasets excluding those for which the linearType I model alone
performed best.
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Predator−prey body−mass ratio
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Figure S.5: The relationship between log2(ω) and log10(PPMR) assuming the Holling-Real model
excluding datasets for which the linear Type I model alone performed best (Table S.2).
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Figure S.6: The relationship between log2(n) and log10(PPMR) assuming the multi-prey model
when considering only those datasets having a sample size greater than the median sample size of
all datasets excluding those for which the linearType I model alone performed best (Table S.3).
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Table S.1: Summary statistics (with 95% confidence intervals) for the least-squares linear re-
gressions of log2(n) of the multi-prey model on log10(PPMR) when considering all studies (n ↓
1) or only those studies for which n >1.

Estimates
n ↓ 1 n >1

Intercept 0.546↑↑↑ (0.455, 0.638) 1.976↑↑↑ (1.806, 2.147)
log10(PPMR) 0.145↑↑↑ (0.106, 0.184) 0.190↑↑↑ (0.122, 0.258)

Observations 2,137 715
R2 0.024 0.041
Adjusted R2 0.024 0.039
Residual Std. Error 1.342 (df = 2135) 1.334 (df = 713)
F Statistic 53.006↑↑↑ (df = 1; 2135) 30.186↑↑↑ (df = 1; 713)

↑p<0.1; ↑↑p<0.05; ↑↑↑p<0.01

Table S.2: Summary statistics (with 95% confidence intervals) for the least-squares linear re-
gressions of log2(ω) of the Holling-Real Type III on log10(PPMR) when considering all studies
(ω ↓ 1) or only those studies for which ω >1.

Estimates
ω ↓ 1 ω >1

Intercept 0.262↑↑↑ (0.222, 0.302) 1.074↑↑↑ (0.974, 1.173)
log10(PPMR) 0.056↑↑↑ (0.039, 0.073) 0.058↑↑↑ (0.020, 0.097)

Observations 2,137 511
R2 0.020 0.017
Adjusted R2 0.019 0.015
Residual Std. Error 0.583 (df = 2135) 0.667 (df = 509)
F Statistic 42.597↑↑↑ (df = 1; 2135) 8.810↑↑↑ (df = 1; 509)

↑p<0.1; ↑↑p<0.05; ↑↑↑p<0.01
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Table S.3: Summary statistics (with 95% confidence intervals) for the least-squares linear re-
gression of log2(n) of the multi-prey model on log10(PPMR) when considering only those studies
having a sample size greater than the median sample size of all studies.

Sample size >36

Intercept 0.440↑↑↑ (0.309, 0.571)
log10(PPMR) 0.228↑↑↑ (0.167, 0.289)

Observations 981
R2 0.052
Adjusted R2 0.051
Residual Std. Error 1.289 (df = 979)
F Statistic 53.442↑↑↑ (df = 1; 979)

↑p<0.1; ↑↑p<0.05; ↑↑↑p<0.01

Table S.4: Summary statistics (with 95% confidence intervals) for the multiple least-squares
linear regression of log2(n) of the multi-prey model on log10(PPMR) ↔ predator group for the
four most common predator taxonomic groups.

Focal predators

Intercept (Insect) 0.544↑↑↑ (0.409, 0.678)
log10(PPMR) 0.167↑↑↑ (0.090, 0.244)
Arachnid →0.305↑↑ (→0.580, →0.029)
Crustacean 0.208 (→0.063, 0.479)
Fish →0.164 (→0.680, 0.352)
log10(PPMR):Arachnid 0.269↑↑ (0.050, 0.488)
log10(PPMR):Crustacean →0.061 (→0.165, 0.044)
log10(PPMR):Fish →0.029 (→0.201, 0.144)

Observations 1,917
R2 0.032
Adjusted R2 0.029
Residual Std. Error 1.318 (df = 1909)
F Statistic 9.150↑↑↑ (df = 7; 1909)

↑p<0.1; ↑↑p<0.05; ↑↑↑p<0.01
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Population-dynamic e!ects

Supplementary figures
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Figure S.7: The coexistence state is asymptotically stable when the real part of the dominant

eigenvalue Re(ε1) is negative. This occurs for n ↗ 1 where it is globally stable and for n > 5

where it is only locally stable. Post-perturbation dynamics towards the stable equilibrium exhibit

monotonic damping when the imaginary part Im(ε1) is zero as occurs for n ↗ 1, but exhibit

damped oscillations when Im(ε > 0) as occurs for higher n. Other parameter values as in Fig. 3.
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A reformulation of the extended Steady State Saturation model

Jeschke et al. (2004) introduced a functional response model that, like the multi-prey model, is
capable of exhibiting a continuum of shapes between the linear Type I and Type II response
forms. In its original formulation, their model is written as

e(1 + aN(b+ c))→
√
e (4acN + e(1 + aN(b→ c))2)

2c(e(1 + abN)→ 1)
, (S.15)

where N is the prey’s abundance, a is the attack rate, b is the handling time, c is the digestion
time, and e is a dimensionless shape parameter interpreted as a!ecting the trade-o! between
search e!ort and hunger level (i.e. gut fullness). The model approaches the rectilinear model as
e ↘ ≃ when b = 0 (see Fig. A2 of Jeschke et al., 2004). For e = 1 it reduces to the “Steady
State Saturation” (SSS) model of Jeschke et al. (2002), written in its original formulation as

1 + aN(b+ c)→
√
1 + aN (2(b+ c) + aN(b→ c)2)

2abcN
. (S.16)

Both models may be expressed in a formulation more similar to the Holling form that eases
a comparison to other functional response models. This may be done by deriving them using
the citardauq formula. The SSS may thereby be rewritten as

2aN

1 + aN(b+ c) +
√
1 + aN (2(b+ c) + aN(b→ c)2)

. (S.17)

(Note that the equation presented in the original version of Novak and Stou!er (2021a) is
incorrect but has subsequently been corrected (Novak and Stou!er, 2024).) The extended SSS
with parameter e may be rewritten as

2aN

1 + aN(b+ c) + 1
e

√
e (4acN + e(1 + aN(b→ c))2)

. (S.18)

With four parameters, the extended SSS model is capable of exhibiting more variation in shape
than the three-parameter multi-prey model. In particular, with su”ciently high e and appropri-
ately chosen non-zero values of b and c, it exhibits curvature at the low prey abundances where
the multi-prey model with high n is e!ectively linear (see Figs. A1 and A2 of Jeschke et al.,
2004).
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