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Appendix A.  Calculating the weighted-predictions matrix of loop analysis. 
 

Loop analysis refers to a method of qualitative modeling developed by Richard Levins 
(Levins 1974, Levins 1975, Puccia and Levins 1985).  Although the term “loop analysis” is no 
longer preferrable due to the historical precedent of referring to loops as cycles (Dambacher et al. 
2002), the term remains widely used for lack of a suitably specific alternative (Justus 2005, 
Justus 2006). 

As illustrated by Dambacher et al. (2002), the classical adjoint of a matrix (a.k.a. its adjugate) 
is related to its inverse by its determinant such that 

. 
Both reflect the net effect of all feedback loops between each pair of species.  The determinant of 
matrix A can be expressed using the Leibniz formula, 

, 
where the summation is over all ! possible matrix minors (all permutations of A where one row 
and one column are each dropped) and sign(!) is -1 when the ith of S total species in the 
community is an odd number and 1 when it is even.  Calculating the inverse of a qualitatively-
specified matrix requires that no two species have an identical linkage structure (e.g., the same 
predators and prey); the matrix will be singular otherwise {Searle, 1966 #243}.  Such groups of 
aggregated trophic species are assumed a priori to have equivalent perturbation responses. 

Dambacher et al. (2002) suggest that the ratio between the absolute net effect of all feedback 
loops (i.e. |adj (°A)|) and the total number of all complementary feedback loops affecting a given 
species pair can be used to gauge the reliability of how species i is predicted to respond to a 
positive change in j.  The weighted-predictions matrix W that embodies this notion is calculated 
as 

 
with wij = 0 if Tij = 0, where |adj(°A)| indicates the absolute of the adjoint, the vector “!” and 
the Hadamard product ! respectively indicate element-wise division and multiplication, and T+ 
is the pseudo-inverse of the feedback matrix T.  This results in each element of W being the 
absolute value of each ij element of the adjoint divided by the total number of feedback loops 
contributing to it.   

The absolute feedback matrix T is calculated by converting each element of °A to its 
absolute value, applying the matrix permanent (a.k.a. the plus determinant) to each of the S2 
minors of the resulting matrix, and transposing the result.  The matrix permanent is calculated by 

, 
differing from the matrix determinant only in that the signs of the minors are dropped such that 
all terms are added.  Lacking the symmetry of the determinant the calculation of the permanent is 
the computational crux to estimating the reliability scores of the weighted-prediction matrix.  It 
remains a computationally intense problem: the most efficient algorithm for calculating the 
permanent exactly requires a minimum of S2S arithmetic calculations for a matrix of S species 
(Ryser 1963), which must be repeated S2 times to compute the absolute feedback matrix (see also 
Jerrum et al. 2004 for an approximate method). 
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Appendix B.  The topological properties of the empirical food webs, and comparisons of qualitative versus quantitative predictions, 
aggregated versus non-aggregated food webs, and alternative parameterizations and richness-connectance levels. 

Table B.1.  Properties of the analyzed empirical food webs, ordered by the proportion of predictions made correctly by loop analysis.  
See Dunne et al. (2002, 2004, #1, 2) for further network properties. 

 Non-aggregated  Aggregated Food web  S1 L2 CI
3

 Cd
4

  S1 L2 R5
 CI

3
 Cd

4
 % Correct predictions7 Ref. 

Canton Creek  108 707 0.06 0.07  102 696 0 0.07 0.08 0.60 #3 
Ythan Estuary 
  (with parasites)  134 594 0.03 0.04  82 391 1 0.06 0.07 0.57 #4 

Ythan Estuary  92 417 0.05 0.06  82 391 1 0.06 0.07 0.56 #5 
Chesapeake Bay  33 71 0.07 0.10  31 67 0 0.07 0.10 0.56 #6 
Scotch Broom  154 366 0.02 0.02  85 219 0 0.03 0.04 0.55 #7 
Bridge Brook Lake  75 548 0.10 0.11  25 104 1 0.17 0.20 0.51 #8 
Stony Stream  112 830 0.07 0.08  109 827 0 0.07 0.08 0.51 #3 
Benguela  29 196 0.24 0.26  29 196 5 0.24 0.26 0.50 #9 
Skipwith Pond  35 369 0.30 0.32  25 189 4 0.31 0.34 0.50 #10 
NE Shelf  81 1458 0.22 0.23  79 1378 7 0.22 0.23 0.50 #11 
Grassland  75 113 0.02 0.03  61 97 0 0.03 0.04 0.50 #12 
Caribbean Reef  50 535 0.21 0.22  50 535 32 0.21 0.22 0.50 #13 
St. Martin Island  44 218 0.12 0.14  42 205 0 0.12 0.14 0.50 #14 
Little Rock Lake  181 2358 0.07 0.08  92 984 24 0.11 0.12 0.50 #15 
El Verde Rainforest  156 1508 0.06 0.07  155 1507 69 0.06 0.07 0.50 #16 
St. Marks Seagrass  48 218 0.10 0.12  48 218 0 0.10 0.12 0.50 #17 
Coachella Valley  30 270 0.28 0.30  29 243 22 0.27 0.30 0.50 #18 
1 S refers to the number of network nodes (species or aggregated trophic groups). 
2 L refers to number of pairwise interspecific links only. 
3 CI refers to interactive connectance. 
4 Cd refers to directed connectance. 
5 R refers to the number of species pairs exhibiting reciprocal predation in the original food web compilation. 
6 Necessary condition for matrix inversion (see Appendix S1). 
7 As calculated by loop analysis and depicted in Figure 1. 
Note: Indices 1-4 & 6 calculated using the qualitatively specified community matrix with self-limitation in all species rather than the 
original list of observed pairwise trophic interactions.



 
Figure B.1  Correspondence in the empirical food webs between the proportion of correct 
predictions made by loop analysis (when interaction strengths are unknown), and those made by 
using the quantified community matrix when interaction strengths are estimated to within an 
order of magnitude as in Figure 1a (r2 = 0.95, t = 12.3 df = 15, p << 0.001).  Line indicates 1:1 
correspondence. 
 
 

 
Figure B.2.  Correspondence in the niche model food webs between the proportion of correct 
predictions made by loop analysis (when interaction strengths are unknown), and those made by 
using the quantified community matrix when interaction strengths are estimated to within an 
order of magnitude (r2 = 0.95, p << 0.001).  Line indicates 1:1 correspondence. 
 



 
Figure B.3.  Frequency histograms of the proportion of correct predictions made across 100 
replicate interaction strength realizations of each network’s quantified community matrix when 
interaction strengths estimated to within an order of magnitude error (F = 10).  The means of 
these distributions correspond to the means presented in Fig. 1.  The 95th quantile of these 
distributions correspond to the proportion of correct predictions presented in Figure B.4. 



 
Figure B.4.  Across all 17 empirical food webs, the upper 95th quantile of the proportion of 
correct predictions made using the quantified community matrix (with interaction strengths 
estimated to within an order of magnitude, F = 10) is well-explained by the proportion of species 
in the food web that are connected to only one or two other species (r2 = 0.93, t = 10.20, df = 15, 
p << 0.001). 
 



 

 
Figure B.5.  The relationship between the mean predictive success of aggregated and non-
aggregated empirical food webs.  Connected points correspond to each of the 17 empirical food 
webs across successive levels of interaction strength estimation error.  The main text presented 
analyses performed on webs of aggregated trophic species (species sharing identical predators 
and prey).  This was necessary to permit comparisons between the predictive success of 
quantitative and qualitative approaches (see Appendix S1), but could reduce the topological 
indeterminacy of these networks to affect higher observed predictive success.  The only web for 
which this was consistently not the case was Bridge Brook Lake, the most highly aggregated 
food web (Table S2.1), suggesting a trade-off between perceived predictive accuracy and the 
degree to which species are perceived to share the same sets of predators and prey. 
 
 



 
 
Figure B.6.  Sensitivity of results to chosen interaction strength parameters.  The mean proportion of correctly made qualitative 
predictions of species responses declines as a function of the error by which hypothetical interspecific interaction strengths are 
estimated in 17 well-characterized empirical food webs with parameters (a-c) e = 0.1, aij > basal-aii = -1, and a skewed Beta[1,4] 
distribution as in Figure 1, (d-f) e = 0.5, (g-i) e = 0.9, (j-l) aij > basal-aii = -10, (m-o) a uniform Beta[1,1] distribution, and (p-r) a more 
strongly skewed Beta[1,6] distribution.  The rate of decline observed when all interactions are estimated with equal likelihood of error 
(top row) is affected little when only the weakest interactions are estimated accurately (middle row), but decreases when the strongest 
interactions are measured accurately (bottom row).  An error factor of 1 corresponds to no estimation error, while an error factor of 10 
corresponds to interaction strengths being estimated to within an order of magnitude for all interaction (top row), for only the strongest 
interactions (middle row), or for only the weakest interactions (bottom row).  A proportion of 0.5 corresponds to a predictive ability 
matching that of flipping a coin. 
 
 



 
Figure B.7. To avoid the potential confusion introduced by assigning self-limitation effects to all 
species we illustrate the correspondence between the directed connectance (Cd) by which the 
complexity of the niche model food webs was specified and the interactive connectance (CI) of 
their corresponding community matrices.  The niche model uses directed connectance (Cd = L/S2, 
where L is the total desired number of interspecific and cannibalistic self-limitation links), while 
interactive connectance counts interspecific links only (CI = LI/S(S-1)). Dashed line indicates 1:1 
correspondence. 



 

 
Figure B.8.  The mean proportion of correctly made qualitative predictions of species responses 
as a function of the error by which interspecific interaction strengths are estimated in model 
communities of increasing size and complexity.  An error factor of 1 corresponds to no 
estimation error, while an error factor of 10 corresponds to interaction strengths being estimated 
to within an order-of-magnitude for all interactions.  Loop analysis uses network topology alone, 
assuming no knowledge of interaction strengths.  Note the log-scale of the abscissa. 
 



 
Figure B.9.  Examples of the stochastic realizations of the niche model algorithm for each of the investigated species richness (S) and 
connectance level (C) combinations. 
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Appendix C. Mathematica commands for calculating the weighted predictions matrix. 

Mathematica commands for computing the Adjoint (adjA), Absolute Feedback (T), and 
Weighted-predictions (W) matrices given a community matrix A are as follows: 
 

(* Specify community matrix *) 
A = {{-1, 1, 1, 1},{-1, -1, 1, 1},{-1, -1, -1, 1},{-1, -1, -1, -1}} 
 

(* Or, import community matrix from file in working directory *) 
Directory[] 
A=Import[“A.csv”]; 
A//MatrixForm 
 

(* Create functions to compute matrix minors and matrix permanent *) 
SetAttributes[ZD, Listable]; ZD[x_, y_]:= If[y == 0, 1, x/y]; 
Minor[m_List?MatrixQ,{i_Integer, j_Integer}]:=Abs[Drop[Transpose[Drop[Transpose[A],{j}]], {i}]] 
Permanent[m_List]:= With[{v = Array[x, Length[m]]},Coefficient[Times @@ (m.v), Times @@ v]] 
 

(* Calculate adjoint, absolute feedback, and weighted-predictions matrices *) 
n = Length[A]; 
adjA = Inverse[-A]*Det[-A]; 
adjA//MatrixForm 
T = Outer[Permanent[Minor[Abs[A], {##}]] &, Sequence @@ Range /@ Dimensions[A], 1]; 
T//MatrixForm 
W = N[ZD[Abs[adjA], T]]; 
W//MatrixForm 
 


