
CONCEPTS & SYNTHESIS
EMPHASIZING NEW IDEAS TO STIMULATE RESEARCH IN ECOLOGY

Ecology, 92(4), 2011, pp. 836–846
! 2011 by the Ecological Society of America

Predicting community responses to perturbations in the face
of imperfect knowledge and network complexity

MARK NOVAK,1,6 J. TIMOTHY WOOTTON,2 DANIEL F. DOAK,3 MARK EMMERSON,4 JAMES A. ESTES,1

AND M. TIMOTHY TINKER
5

1Department of Ecology and Evolutionary Biology, Long Marine Laboratory, University of California,
Santa Cruz, California 95064 USA

2Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637 USA
3Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071 USA

4Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland
5U.S. Geological Survey, Western Ecological Research Center, Long Marine Laboratory, 100 Shaffer Road,

Santa Cruz, California 95060 USA

Abstract. How best to predict the effects of perturbations to ecological communities has
been a long-standing goal for both applied and basic ecology. This quest has recently been
revived by new empirical data, new analysis methods, and increased computing speed, with the
promise that ecologically important insights may be obtainable from a limited knowledge of
community interactions. We use empirically based and simulated networks of varying size and
connectance to assess two limitations to predicting perturbation responses in multispecies
communities: (1) the inaccuracy by which species interaction strengths are empirically
quantified and (2) the indeterminacy of species responses due to indirect effects associated with
network size and structure. We find that even modest levels of species richness and
connectance (; 25 pairwise interactions) impose high requirements for interaction strength
estimates because system indeterminacy rapidly overwhelms predictive insights. Nevertheless,
even poorly estimated interaction strengths provide greater average predictive certainty than
an approach that uses only the sign of each interaction. Our simulations provide guidance in
dealing with the trade-offs involved in maximizing the utility of network approaches for
predicting dynamics in multispecies communities.

Key words: community matrix; disturbance; ecosystem-based management; interaction strengths; loop
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INTRODUCTION

A long standing, important, but still poorly solved
problem in ecology is how best to predict the responses
of species subjected to natural and anthropogenic
disturbances. Natural communities are simply too
species rich for all aspects of their complexity to be
completely known. Consequently, virtually all efforts to
understand community dynamics rely on simplifying
assumptions, either formal or informal. These assump-
tions range from what types of interactions are most
fundamental (e.g., trophic, competitive, mutualistic), to
what species have the greatest impact (e.g., keystones,
dominants), to what features of their interactions are

most critical in driving specific responses (e.g., distribu-
tions, interaction strengths, nonlinearities). All ap-
proaches seek to distill the complexity of nature down
to manageable and measurable levels that nonetheless
allow reliable predictions of system behaviors to be
made.

The central feature of these efforts is the notion that
all ecological communities are composed of species
connected to each other both directly and indirectly
through the shared network of direct species interac-
tions. The presence of indirect effects means that species
need not interact directly to affect each other’s
populations, and that direct effects may be counteracted
by indirect effects. For example, in an intraguild
predation scenario (Fig. 1), the net effect of the
intermediate consumer (B) on the top consumer (A)
arises from both its positive direct effect as a source of
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food, but also a negative indirect effect caused by
exploitative competition for their shared resource (C).
Insights into the structure of community interaction
networks have thus been fundamental to our under-
standing of the factors that organize communities and
affect their dynamics through the propagation of
perturbations (Wootton 1994, Polis and Winemiller
1996, Bascompte 2009). Accordingly, calls for more
highly resolved empirical networks and the quantifica-
tion of their interaction strengths are pervasive in the
ecological literature (e.g., Borer et al. 2002, Cohen et al.
2003). The application of network approaches has also
become important in applied ecology, where holistic,
ecosystem-based approaches to the management of
multispecies communities are increasingly advocated.
Consideration of interaction networks and their indirect
effects is becoming common in fisheries management,
pest control, and conservation science (e.g., Ramsey and
Veltman 2005, Macfadyen et al. 2009, Worm et al.
2009).
The complexity of species interaction networks itself

nevertheless poses several major obstacles for the
prediction of community effects following even simple
perturbations. Primary among these are the difficulty of
quantifying the strengths of species interactions, and the
manner by which loops of reticulate interaction chains
can magnify or dampen the effect of each direct
interaction (Fig. 1). While these problems are generally
appreciated, it is not yet clear how severely they limit
our ability to understand community dynamics, espe-
cially given the limited information upon which com-
munity-wide analyses are virtually always based. Yodzis
(1988a, b) was among the first to quantify the dramatic
effects that the misspecification of interaction strengths
can have for predictions of community dynamics,
showing that order-of-magnitude errors in the estima-
tion of interaction strengths could routinely reverse the
direction by which species abundances are predicted to
respond to a perturbation elsewhere in the food web (see
also Montoya et al. 2009). Indirect effects and variation
in interaction strengths can combine to affect positive
species responses even in systems of pure competition
where each species’ direct effect on another is negative
(Stone and Roberts 1991, Roberts and Stone 2004).
Others have highlighted how much of this directional
indeterminacy is affected by network topology alone,
independent of variation in interaction strengths (Dam-
bacher et al. 2002, 2003a).
A systematic understanding of when topology and

imprecise interaction strength estimates will combine to
limit predictive success is essential in the careful and
robust application of network approaches. We therefore
revisit Yodzis (1988a, b) and use empirically based and
model food webs of varying size and complexity to
systematically ascertain how precisely the strengths of
species interactions must be estimated to accurately
predict the directional response of species abundances to
perturbations. Interaction strengths are now commonly

estimated by a variety of approaches (Wootton and
Emmerson 2005, Novak and Wootton 2010), but the
predictive potential of these or qualitative approaches in
species-rich systems remains largely unknown.

We make use of the community matrix (Levins 1968)
as a means of encapsulating the strength and topology
of all the pairwise direct interactions in a network.
Indirect effects such as trophic cascades are emergent
consequences of these direct interactions, mediated
solely by changes in species abundances. Our analyses
focus on predicting the long-term effects of small press
perturbations on species abundances and thereby differs
from other analyses assessing the effects of complete
species removals (e.g., Dunne et al. 2002). Press
perturbations (the systematic change to any parameter
affecting a population’s growth rate, as in the contin-
uous removal or addition of individuals) are represen-
tative of many of the disturbances that communities
experience, such as the effects of fisheries harvest,
pollution, eutrophication, or a controlled experiment
(Bender et al. 1984, Yodzis 1995). Application of
theoretical press perturbations to the community matrix
reveal the net effects of such disturbances on equilibrium
species abundances, as shifts in abundances propagate
through a community via all its direct and indirect
interactions. The power of this approach is that it
stipulates each species’ dynamics only as

dNi

dt
¼ fiðN1;N2; . . . ;NsÞ i ¼ 1; . . . ; S

where the function fi could represent any conceivable
relationship between the abundance (N ) of species i and
all other S species (Yodzis 1981, 1988a, 1995). Each ij
element of the community matrix represents the partial

FIG. 1. The potential for indirect effects and the misesti-
mation of direct interaction strengths to combine and reverse
the predicted response of a species to perturbations elsewhere in
the community is evident even in networks of low complexity.
In an intraguild predation system, a perturbation that increases
the abundance of the intermediate consumer (B) could affect
either an increase (þ ), a decrease (–), or no change in the
abundance of the omnivore (A) if the strength of their direct
interaction were to be respectively estimated to be greater, less
than, or precisely equal to the magnitude of their indirect
interaction as mediated by their shared basal resource (C).
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derivative of fi with respect to the abundance of species j
(i.e., Aij ¼ ]fi/]Nj), reflecting the direct effect of a small
change in species j’s abundance on species i’s growth
rate. The underlying structural conjecture is thus that
each species’ dynamics can in fact be described by some
continuous function. Species interactions and dynamics
need not themselves be linear, but rather are assumed to
be well-represented by a linearization near equilibrium
abundances (Stone and Roberts 1991, Haydon 1994).
Our analyses therefore provide a first-order rendition of
other more detailed, restrictive, and data-hungry mod-
eling efforts.
Our findings caution against placing too much weight

on predictions from networks with more than ; 25
pairwise interactions in the absence of exceptionally
accurate empirical data. However, we also show that
even comparatively poorly quantified interaction
strengths offer more predictive reliability on average
than does a qualitative approach that specifies only
network topology and the sign of each interaction.
Further analyses investigating the effects of network size
and complexity on the prevalence of topological
indeterminacy offer guidance in the application of
network approaches in community ecology by quanti-
fying the limits of their predictive reliability. We
conclude by discussing alternative strategies to maximize
the utility of network approaches for predicting
dynamics in species-rich communities.

MATERIALS AND METHODS

Prediction error in empirical food webs

We first conducted a set of analyses based upon 17
empirical food webs whose topologies are considered to
be among the most well-characterized of any interaction
networks available (Appendix B: Table B1; see Dunne et
al. 2002, 2004), although the strengths of their species
interactions are unknown. We studied both the aggre-
gated and original versions of these networks. The
aggregation of taxa with shared sets of predators and
prey reduced the structural biases associated with their
reconstruction (Williams and Martinez 2000), avoided
degenerate community matrices in qualitative modeling
(Appendix A), and remained representative of the
network topologies of nature. In typical fashion we
converted each network to a quantitatively specified
community matrix (henceforth denoted by #A, follow-
ing Dambacher et al. [2003a]) as follows: The diagonal
elements specifying self-limitation terms of all basal
species, baii, were set to %1 (May 1972), while the caii
terms of consumer species were set to 1/1000th of that of
the basal species (Yodzis 1988b). (Henceforth, super-
scripts b and c respectively refer to basal and consumer
species.) By specifying negative diagonal elements we
effectively assumed that all species interactions were
non-saturating (type I- or type III-like functional
responses) and that population sizes were at a feasible
equilibrium (Haydon 1994). Off-diagonal negative top-
down interaction strengths of consumers on their prey,

aij, were drawn from a beta distribution (Beta[1, 4]) to
reflect the skewed nature of empirical interaction
strength distributions (Wootton and Emmerson 2005).
This distribution was truncated such that the effects of
consumer j on resource i were constrained to lie within
the limits caii . aij .

baii. Positive bottom-up interaction
strengths were specified as aji ¼%eaij, with conversion
efficiency e set to 0.1 for all interactions. This process of
converting the empirical webs to matrix form introduced
the unavoidable result that only one of any two
reciprocal predators was deemed to feed upon the other.
We specified directionality to this fraction of interac-
tions at random (see also Allesina and Pascual 2008).
The negative of each #A was inverted to predict the

response of species to press perturbations in their food
web (Bender et al. 1984, Yodzis 1988b). Each element of
%#A%1 reflects the direction and relative (within-column)
magnitude by which the local equilibrium abundance of
a species in row i (N&i ) will respond to a sustained small
input of individuals to the species in column j (Ij)
because

%ð#A%1Þij¼
]N&i
]Ij

obtained using the differentiation of fi(N1, N2, . . .) ¼ 0
for all i 6¼ j and fj(N1, N2, . . .) þ Ij¼ 0 with respect to Ij
(Bender et al. 1984, Yodzis 1988b). That is, since ]N&i ¼
%(#A%1)ij3]Ij, a small press perturbation Ij will cause a
change in species i’s equilibrium abundance that is
proportional to %(#A%1)ij. The net effects expressed by
the ijth element of %#A%1 occur via all the direct and
indirect chains of interactions linking the two species
(Yodzis 1988b). The diagonal elements of%#A%1 reflect
the net result of each species’ own indirect effects on
itself as mediated by the other species in the network
(Haydon 1994). We used the resulting sign-structure of
each %#A%1 to specify each network’s set of ‘‘true’’
directional responses (i.e., predictions with no estima-
tion error).
Error in interaction strength estimates was then added

to each interaction value of #A. For each non-zero aij we
randomly chose (with equal probability) to draw a new
value either from a [aij, aij 3 F ] uniform distribution,
representing on overestimate of the true aij, or from a
[aij/F, aij] uniform distribution, representing an under-
estimate of the aij, where parameter F specified the
maximum possible proportional error of an estimate
(Yodzis 1988b). This ensured that (1) no directional bias
in misestimation occurred, and that (2) the maximum
possible error was proportional to the magnitude of the
expected interaction strength itself, as is likely to be the
case for empirical estimates (Novak and Wootton 2008).
F was varied systematically between 1 (no error) and 10
(an order of magnitude error, as in Yodzis 1988b) while
ensuring aij ,

caii for all species. To assess the effects
that this estimation error had on predictive accuracy we
calculated the proportion of elements in%#A%1 without
introduced error that matched the sign-structure of the
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respective elements in %#A%1 with introduced error at
each F error level for each empirical network. The
process of specifying ‘‘true’’ interaction strengths,
adding increasing amounts of estimation error, and
assessing predictive accuracy was repeated once for each
of 100 realizations of A for each empirical network.
To assess the sensitivity of our results to chosen

interaction strength parameters, we repeated our anal-
yses with (1) e set to either 0.5 or 0.9, (2) interactions
specified to an order of magnitude greater strength (aij .
baii ¼ %10), and (3) by drawing aij from uniform
(Beta[1, 1]) or more strongly skewed (Beta[1, 6]) distri-
butions. To assess the utility of focusing future empirical
efforts on measuring only a subset of the interactions in
a community we repeated the analyses allowing either
the strength of (1) only the strongest or (2) only the
weakest interactions to be estimated with error (i.e., the
upper or lower 50th quartile of aij values, respectively).
We also assessed the degree to which the species-specific
linkage densities of a network (the proportion of species
in a network connected to only one or two other species)
could be used to explain predictive success.
We next investigated the reliability of predictions of

species responses when interaction strengths are entirely
unknown and only the structure and qualitative sign of
each non-zero interaction of a network is specified
(Mason 1953, Levins 1968). Each aggregated network’s
#A was converted to qualitatively specified form
(henceforth denoted by 8A following Dambacher et al.
2002) by removing information on the magnitude of aij
elements. We then used the matrix methods of loop
analysis to predict directional species responses by
calculating the matrix adjoint, adj(%8A) ¼ %8A%1/
det(%8A) (Dambacher 2002; Appendix A) and deter-
mined the proportion of elements in adj(%8A) that
matched the sign-structure of the respective elements in
%#A%1 without error.

Prediction error in model food webs

We used the niche model algorithm of Williams and
Martinez (2000) to tease apart the effects of network size
and complexity inherent in our use of the empirical
networks. This algorithm, which has seen broad
validation as a way to generate ‘‘realistic’’ networks by
a variety of metrics measured in empirical food webs
(e.g., Williams and Martinez 2000, Dunne et al. 2004,
Stouffer et al. 2006), allowed us to create replicate food
webs of systematically varying species richness and
connectance. Requiring the specification of species
richness (S ) and connectance (Cd, the proportion of
possible interactions that is realized as L links, L/S2), the
algorithm begins by assigning each species to a random
position on a one-dimensional niche axis (ni drawn from
a Unif [0, 1]). Each species’ diet breadth along this axis is
stochastically specified, with its potential diet range, ri,
and diet center, ci, defined as ri ¼ ni 3 xi, where xi ;
Beta[1, 1% 1/(2Cd)] and ci ; Unif [ri/2, ni] (Bagdassarian
et al. 2007). Species i feeds on all species within its

feeding range, but the species with the smallest ni does
not prey on any other species (Williams and Martinez
2004).

We created food webs of 6 to 100 species at five
possible connectance levels (Cd ¼ (0.05, 0.1, 0.15, 0.25,
0.35) 6 0.02) reflecting the range of richness and
connectance levels observed in the empirical networks
(Table B1). These were converted into community
matrix form if all species were connected in a single
network. We then repeated our assessment of quantita-
tive interaction strength estimation error (%#A%1 vs.
%#A%1

error) and loop analysis (%#A%1 vs. adj(%8A)) as
above, calculating the proportion of qualitative matches
across 100 replicate networks having positive determi-
nants at each richness-connectance level.

Limits to structural predictive reliability

If quantitative and qualitative analyses of food web
perturbations may frequently be inaccurate, one would
like to know which networks will have this limitation
and which will not. To approach this issue we used the
weighted-predictions matrix (W) of loop analysis to
further investigate how network size and complexity
contribute to variation in predictive reliability associated
with network structure itself (Dambacher et al. 2002,
2003a). Each element of W reflects the ratio of the net
effects (positive or negative) of a species in column j on
the species in row i and the total number of feedback
loops that link the two species in 8A (Appendix A). A wij

value of 0 thereby indicates that half of the feedbacks
linking two species have net positive structural effect
and the other half have net negative effect (a 1:1 ratio); a
value of 0.5 reflects a ratio of 3:1. Species pairs with low
wij are expected to have low structurally predictive
reliability, their net effects being more dependent upon
the strengths of their direct and indirect interactions,
while pairs with high wij are expected to have reliably
predictable net effects. Dambacher et al. (2002) suggest a
confidence cut-off level of 0.5 for the assignment of
structurally reliable predictions because predictions with
wij . 0.5 exhibit high sign determinacy; predictions
having wij . 0.5 were associated with consistent
predictions .90% of the time in simulations (Dam-
bacher et al. 2003a, Hosack et al. 2008). Note that high
structural reliability need not necessarily indicate
prediction correctness.

We used the niche model to create food webs of 6–24
species at connectance levels of 0.05–0.35. Prior
applications of the weighted-predictions matrix have
been restricted to networks of ' 10 species (Dambacher
et al. 2002, 2003a, b, Hosack et al. 2008). Self-limitation
was imposed on all species by setting diagonal elements
to %1 (Dambacher et al. 2002, 2003a). A potential
network was rejected when det(%8A) . 0 so that all
accepted networks could be inverted. For each of five
networks produced at each possible richness-connec-
tance combination we used Mathematica (Wolfram
Research, Inc, Champaign, Illinois, USA) to calculate
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W (Appendix C). We calculated the mean and 95th
percentile of weighted predictions within each W, and
tallied the number of predictions having wij . 0.5 to
assess how predictive reliability varied with network

size, connectance, and the total number of predator–
prey interactions.

RESULTS

The accuracy of interaction strength estimates

Increasing amounts of introduced error in interaction
strength estimates led to a decreasing proportion of
correctly made predictions in all empirical food webs
(Fig. 2). In some networks (e.g., Little Rock lake and
Caribbean Reef ) the mean proportion of correctly made
predictions dropped to 50% (equivalent to predicting a
species’ response by flipping a coin) when interactions
were not estimated to within 6100% of their true value
(proportional error F , 2, Fig. 2a). Other networks
(e.g., Canton Creek and Ythan Estuary) exhibited an
average of .75% correct predictions at this level of
estimation accuracy. These networks retained better-
than-random mean predictive success even when inter-
action strengths were estimated to within only an order
of magnitude of their true value (F ¼ 10). With one
exception (Bridge Brook lake) our use of aggregated
rather than non-aggregated versions of the empirical
networks had either little effect on these results or
increased mean predictive success by up to 9.5% at
intermediate levels of estimation error (Appendix B: Fig.
B5). With increasing estimation error the mean propor-
tion of correctly made predictions tended to converge on
the predictive success of loop analysis (r2¼0.95, t¼12.3,
P , 0.001 at F¼ 10, Appendix B: Fig. B1). Variation in
predictive success was large however, with many
individual quantitative realizations performing worse
than their qualitative counterpart. Mean predictive
success at an order-of-magnitude error was positively
but weakly correlated with the proportion of species in a
network that were linked to only one or two other
species (r2¼ 0.46, t¼ 1.98, P¼ 0.07). The 95th quantile
of correctly made predictions at F ¼ 10, on the other
hand, was positively and strongly correlated with the
proportion of species in a network that were linked to
only one or two other species (r2 ¼ 0.93, t¼ 10.20, P ,
0.0001; Appendix B: Fig. B4).
Relative to the situation where all interactions were

measured with error, the rate by which mean predictive
accuracy declined with increasing error was little
affected when only weak interactions were measured
accurately (Fig. 2b), but was reduced when strong
interactions were estimated accurately (Fig. 2c). How-
ever, at high F values, even these simulations, with all
strong interaction estimated without error, illustrated
extremely poor predictive success (Fig. 2c). Alternate
conversion efficiencies, maximum interaction strengths,
and interaction strength distributions generally had
negligible effect on these patterns, although conversion
efficiencies of e¼ 0.9 tended to reduce the rate by which
predictive accuracy declined as estimation error in-
creased (Appendix B: Fig. B6).
We found the same general result in simulations of

niche model networks: falling accuracy in interaction

FIG. 2. The proportion of qualitatively correct species
response predictions declines as a function of the error by which
interspecific interaction strengths are estimated in 17 well-
characterized empirical food webs. The mean for each network
is in black; n ¼ 100 individual true-aij realizations for each
network are in gray. A proportion of 0.5 corresponds to
predictive success matching that of flipping a coin. The figure
illustrates the rate of decline observed when: (a) all interactions
are estimated with equal likelihood of error; (b) only the
weakest interactions are estimated without error; and (c) only
the strongest interactions are estimated without error. An error
factor of 1 corresponds to no estimation error, while an error
factor of 10 corresponds to interaction strengths being
estimated to within an order of magnitude for (a) all, (b) the
strongest, or (c) the weakest interactions. The proportion of
correct predictions made for each network by loop analysis,
which uses network topology alone assuming no knowledge of
interaction strengths, is also shown (see Methods: Prediction
error in empirical food webs). Note the log scale of the x-axis.
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strength estimates decreased the mean proportion of
correctly made predictions (Fig. 3). As with the
empirical networks, the mean proportion of correct
predictions made with quantified interaction strengths
tended to converge on the proportion of correct
predictions made by loop analysis as estimation error
increased (r2 ¼ 0.95 at F ¼ 10; Appendix B: Fig. B2).
Predictions were fully indeterminate (50% predictive
success) in all networks of 100 species when interaction
strengths were not estimated to within 6100% of their
true value (F , 2) regardless of connectance level (Fig.
3d). In networks of 20 species the proportion of correct
predictions approached 50% when interaction strengths
were estimated with F . 4 when Cd . 0.15, but
remained above 80% when Cd ¼ 0.05 even when
interactions were estimated to within an order-of-
magnitude accuracy (F ¼ 10, Fig. 3b). Networks of 8
species and Cd ¼ 0.1 retained 100% correct predictions
regardless of estimation error. This occurred because
they consisted of either a simple linear interaction chain
or a non-reticulate tree structure (Appendix B: Fig. B9).

Limits to qualitative reliability scores

The mean and 95th percentile of weighted predictions
values, as well as the proportion of predictions deemed

reliable (i.e., wij . 0.5), diminished rapidly as network
size and connectance increased (Fig. 4a–c). On average,
no structural reliability score exceeded 0.5 in networks
of 24 species regardless of their connectance. Only in
networks of low connectance (Cd ' 0.15) was the
average proportion of structurally reliable predictions
likely to exceed 20% in networks of 10 or more species.
A good predictor for the proportion of predictions
having wij . 0.5 was the total number of predator–prey
interactions present in the network (Fig. 4d). Only 1.5%
of all networks with more than 25 links had more than
1% of their predictions associated with wij values greater
than 0.5. All networks with more than 35 links had less
than 1% structurally reliable predictions.

DISCUSSION

The pessimist’s view

Natural communities typically contain hundreds to
thousands of species with the potential of interacting
with one another in a vast number of ways (Polis and
Strong 1996; see Plate 1). Our findings therefore suggest
a daunting scenario for predicting the response of
species to perturbations elsewhere in their community.
Using simplified descriptions of nature’s true complexity
that focused only on trophic interactions, our analyses

FIG. 3. The mean proportion of qualitatively correct species response predictions declines as a function of the error (F ) by
which interspecific interaction strengths are estimated in niche model networks of varying size and complexity. Loop analysis uses
network topology alone, assuming no knowledge of interaction strengths. See Methods: Prediction error in empirical food webs and
Fig. 2 for details. Only networks of (a) species richness S ¼ 8, (b) 20, (c) 50, and (d) 100 species are shown; others are shown in
Appendix B: Fig. B7. Connectance reflects directed connectance.
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of empirical and model network structures demonstrate
the accuracy that is needed in estimating species
interaction strengths to avoid erroneous predictions
due to indirect effects. Our ability to predict the response
of a species to a perturbation elsewhere in its network
declined to the level of flipping a coin in most empirical
networks, and in model networks of ( 50 species, when
interaction strengths were not measured to within 100%
of their true value (Figs. 1 and 2). As estimation errors
were assumed to follow uniform distributions in our
simulations, the ardent pessimist might even argue that
average estimates need be twice as accurate still. Seeking
to predict only the direction, not the magnitude, of a
species’ response, our simulations assumed non-saturat-
ing interactions and no interaction modifications, prey
switching, or spatiotemporal variation in interaction
strengths, all of which occur in nature (Doak et al.
2008). Therefore, observation error and structural
indeterminacy due to indirect effects alone set the limits
of predictive success in networks of moderate to large
size or complexity. Our use of aggregated rather than
non-aggregated versions of the empirical networks
further simplified their true complexity of species-
specific differences. The niche model networks that
teased apart the effects of size and complexity suggest

extremely limited predictive reliability in realistically
connected networks of more than 24 species, or more
generally in networks exhibiting more than ; 25 pairwise
species-to-species interactions (Fig. 4). Even more
discouragingly, simulations that assumed perfect knowl-
edge of all strong interaction still yielded poor predictive
power if weak interactions were not reasonably well
characterized (Fig. 2). This implies that multiple weak
interactions have the power to strongly shape commu-
nity-wide responses to perturbations. Given the gener-
alized assumptions of our analyses these conclusions are
expected to hold for alternative predictive approaches
having more specific model formulations (e.g., Ecopath,
allometric models [see Yodzis 1981, 1988a, 1995]).

The optimist’s view

The good news is that there are numerous counter-
arguments to this discouraging interpretation of our
results. For one, our approach assumed that all post-
perturbation dynamics have played-out such that each
species has reached a new point equilibrium abundance.
Even in an empirical reality where perturbations are
more variable and equilibrium conditions may never be
attained, it may be easier to predict short-term, transient
responses. Methods for unraveling the temporal prop-

FIG. 4. Predictive insight into the structural indeterminacy of a network as measured by (a) the grand mean of weighted-
predictions (wij), (b) the mean 95th quantile of wij, and (c) the proportion of predictions deemed reliable (wij . 0.5) decreases
rapidly with increasing network size and connectance (6SE). (d) The proportion of structurally reliable predictions declines to zero
as the number of interspecific links in a network exceeds ; 25. See Methods: Limits to structural predictive reliability and Appendix
A for details. Note the break in the x-axis. Connectance reflects directed connectance.
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agation of indirect effects between a system’s equilibria
(Yodzis 1988b, 1995, Higashi and Nakajima 1995,
Takimoto et al. 2009) or in systems of bounded non-
equilibrium dynamics (Puccia and Levins 1985, Dam-
bacher et al. 2009) are available. In theory certainly,
first-order impacts are completely predictable, depend-
ing only on the sign and strength of the interactions
between the perturbed species and its directly linked
neighbors (Yodzis 1995). How quickly this predictabil-
ity declines empirically will be a function of the
timescales over which species abundances respond to
propagate the perturbation. Empirical studies suggest
that such propagation can occur rapidly (Menge 1997).
An important empirical question emerging from our

analyses concerns the accuracy by which interaction
strengths can in fact be estimated. This is an essential
issue because interaction strengths among species pairs
vary considerably in real food webs (Wootton and
Emmerson 2005). Notwithstanding spatiotemporal pro-
cess variation, is a level of accuracy to within 100% (F¼
2) easily obtained or clearly out of reach for most
empirical systems? Very few studies have explicitly
compared independent interaction strength estimates in
natural contexts. The predictions of some interaction
strength estimates have shown remarkable correspon-
dence to independent experimental effects (e.g., Woot-
ton 1997, O’Gorman et al. 2010). A recent study directly
comparing per capita interaction strengths derived from
manipulative experiments to those of an observational
approach yielded estimates that differed from as little as
5% up to 610% (Novak 2010). These differences are
certainly better than an order-of-magnitude error (F ¼
10; Yodzis 1988b). Further efforts to quantify estimation
accuracy, and to distinguish process from observation
error (Hilborn and Mangel 1997, Wootton and Emmer-
son 2005), would help place the results of our
simulations in context.
Further hope is offered from our analyses by (1) the

variation in the mean predictive success observed
between different empirical networks and (2) by the
variation around the mean predictive success observed
across replicate realizations of each empirical network.
That is, while the mean predictive success of some
networks dropped to 50% quite rapidly with increasing
estimation error, and a large fraction of individual
realizations exhibited worse-than-random predictive
success with only 1% estimation error for some
networks, the converse was also true: Some networks
(e.g., Canton Creek, Ythan Estuary, Scotch Broom, and
Chesapeake Bay) retained better-than-random predic-
tive success even when interaction strengths were
entirely unknown (Fig. 2; Table B1). In other networks
(e.g., Grassland) individual realizations exhibited up to
80% predictive success, even when mean success across
all realizations was only 50% at an order-of-magnitude
estimation error (Appendix B: Fig. B3). These observa-
tions, and the fact that the 95th quantile (rather than the
mean) of predictive success at an order-of-magnitude

error was tightly correlated with the proportion of
poorly connected species in a network (Appendix B: Fig.
B4), indicate that certain network topologies, species in
key topological positions, or the strengths of some key
interactions, are more important for preserving predic-
tive success than are others (see also Montoya et al.
2009). The analyses presented here cannot distinguish
whether these key positions or key interactions directly
correspond to poorly connected species; other species
(or interactions), including richly connected species,
could produce the same results if they are themselves
linked directly to (or directly link) the poorly connected
species. Further analyses are needed to discriminate
between these nonexclusive alternatives to determine the
degree to which particular species characteristics can be
attributed the cause of predictive success. Since mean
predictive success at an order-of-magnitude error was
little affected in simulations where all weak (Fig. 2b) or
all strong (Fig. 2c) interactions were estimated with full
accuracy, the answer is not as simple as distinguishing
among species pairs with strong vs. weak interactions.
Similarly, since networks that exhibited equally poor
predictive success using loop analysis differed in their
mean predictive success at better-than order-of-magni-
tude levels of estimation error, the answer does not lie
with network topology alone. The potential body-size
mediated association between the strengths of a species’
interactions and its structural position in a network may
offer empirical focus to these observations (O’Gorman
et al. 2010); our simulations specified the position of
strong and weak interactions at random.

The way forward

The observation that the mean predictive success of
the quantified interaction strength approach converges
to the predictive success of loop analysis as estimation
accuracy declines suggests that having some knowledge
of interaction strengths will, on average, be better than
having none at all (Figs. 1 and 2). Furthermore, the
accurate estimation of strong interactions reduces the
rate at which mean predictive success declines with
increasing estimation error (Fig. 2c). A better under-
standing of the empirical species-pair attributes associ-
ated with strong interactions may therefore provide a
means to focus empirical efforts to increase predictive
success. Accumulating empirical evidence suggests that
such attributes may include the ratio of predator to prey
body sizes and metabolic rates (Wootton and Emmer-
son 2005, Brose et al. 2008). Furthermore, strong
interactions are likely to be measured more accurately
than weak interactions (Novak and Wootton 2008).
Nonetheless, an exclusive focus on strong interactions is
ill-advised: the accurate estimation of strong interactions
provided no increase in predictive success when weak
interactions were estimated to within an order-of-
magnitude error (Fig. 2). The importance of quantifying
both strong and weak interactions extends to efforts
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assessing the stability of ecological communities (O’Gor-
man and Emmerson 2009).
Other than focusing on the poorly connected species

of a network and increasing the accuracy by which we
measure interaction strengths, what else can we do to
increase predictive success? Our investigation of how
network size and complexity contribute to the decline of
predictive reliability suggest that indirect effects set the
limits in realistically connected networks of more than
24 species (Fig. 4a, b). Networks with more than ; 25
links retained extremely limited predictive reliability
associated with their structure alone (Fig. 4c). For
networks of pure competition communities such depen-
dence of net effects on the number of links rather than
species per se has been shown analytically (Roberts and
Stone 2004) and could be used to guide empirical effort.
Our analyses suggest that the further aggregation of
species into trophic groups beyond their mutually
identical predator and prey associations is unlikely to
be fruitful; the resultant increase in connectance can
quickly offset its benefits (Fig. 4). An extensive literature
on species aggregation raises additional concerns (Yod-
zis and Winemiller 1999), including its effects on the
misestimation of interaction strengths (e.g., Gardner et
al. 1982, Bender et al. 1984, Fulton et al. 2003).
An alternative approach might consider only groups

of ,24 species at a time, particularly when these are
organized into network compartments (e.g., Krause et
al. 2003, Allesina and Pascual 2009). When present,
compartments should limit the propagation of indirect

effects to reduce indeterminacy, just as they are thought
to increase network stability (May 1972, Krause et al.
2003). In theory, species receiving or affecting only very
weak interactions, or responding on very different
timescales due to differences in generation times, might
be safely ignored when predicting post-perturbation
population sizes (Schaffer 1981, Bender et al. 1984). The
same should extend to network compartments. Efforts
to predict species responses to perturbations might
thereby be simplified by hierarchical analyses of the less
connected sub-networks. The efficacy of this approach
will depend on the strength of compartmentalization
(the relative number of links between vs. within
compartments) and the extent to which interactions
between compartments are weak. More work is needed
to assess the degree to which species attributes such as
body size, phylogeny, or habitat associations are
associated with objective measures of group membership
(Allesina and Pascual 2009).
An additional means to reduce predictive uncertainty

holds further promise. Where available, prior informa-
tion on how a subset of species responds to known
perturbations elsewhere in their community could be
used to constrain the universe of perturbation responses
expected in other species. For the networks of our
simulations such information was unavailable. Predic-
tive certainty should increase as the ratio of prior
information to network size and complexity increases.
The fusion of loop analysis and Bayesian belief networks
by Hosack et al. (2008) provides a powerful means of

PLATE 1. Analyses of empirical and simulated interaction networks suggest that species interactions must be accurately
estimated to reliably predict the response of species to perturbations elsewhere in their community, even when communities are
relatively species-poor. This small (,0.125 m2) area of the Oregon (USA) intertidal contains at least 30 species visible to the naked
eye of the .300 species that occur in this habitat. Photo credit: R. T. Novak.
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incorporating such knowledge in the context of explicit
network structures and offers an exciting direction for
further development.

CONCLUSIONS

Predicting the response of species to perturbations in
their community will remain a difficult endeavor in all
but the simplest and most well-defined ecological
systems. It seems prudent to restrict the predictive
application of qualitative methods to abstracted net-
works and to communities typically dealt with in
logistically tractable experiments; the power of loop
analysis lies in the analysis of a network’s indeterminacy
to distinguish key uncertainties. Its utility thus remains
complimentary to quantitative methods, as originally
proposed. Ultimately, our ability to predict the conse-
quences of a perturbation rests on empirical factors that
remain poorly addressed by our current understanding:
how well can we measure interaction strengths, what are
the key network elements that confer predictive success,
and how compartmentalized are ecological networks?
Each of these considerations will also control our ability
to assess the stability of ecological communities. More
generally, our results suggest that efforts to predict
community-wide consequences of even very targeted
perturbations must seek to address parameter uncer-
tainty, and hence predictive uncertainty, rather than
assuming that network predictions are robust to either
the structure or interaction strengths that characterize a
community of interest. Thus, until further work is able
to sharpen our predictive methods, cautious and
adaptive management approaches may be more impor-
tant than the holistic modeling of nature’s complexity
itself.
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APPENDIX A

Calculating the weighted-predictions matrix of loop analysis (Ecological Archives E092-072-A1).

APPENDIX B

The topological properties of the empirical food webs, and comparisons of qualitative vs. quantitative predictions, aggregated vs.
non-aggregated food webs, and alternative parameterizations and richness-connectance levels (Ecological Archives E092-072-A2).

APPENDIX C

Mathematica commands for calculating the weighted predictions matrix (Ecological Archives E092-072-A3).
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