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S1 Original model parameterizations

Table S1: Original formulations for the models which we re-parameterized (with the exception of the
Hyperbolic tangent, which is written here in an alternative formulation). Note that we divide the models
of Barbier et al. (2021) by P because their formulations describe population-level feeding rates whereas
all others describe per-predator feeding rates.

Name Original Reference

One-parameter models (k = 1)

Barbier–Wojcik–Loreau I a
√
NP/P Barbier et al. (2021)

Two-parameter models (k = 2)

Abrams I
√

qcN
d(1+chN) Abrams (1990)

Abrams III
√
N

2
√
uH+h

√
N

Abrams (1990)

Hyperbolic tangent 1
b
exp[2abN ]+1
exp[2abN ]−1 Jassby & Platt (1976)

Sokol–Howell aN
b+N2 Sokol & Howell (1981)

Three-parameter models (k = 3)

Abrams II cN

1+hmincN+
√

cN
a (1+chminN)

Abrams (1990)

Hassell–Lawton–Beddington aN2

1+cN+abN2 Hassell et al. (1977)

Monod–Haldane aN
b+N+N2/c Andrews (1968)

Tostowaryk aN
1+abN+acN3 Tostowaryk (1972)

Fujii–Holling–Mace 1
b+1/(aN exp[dN ]) Fujii et al. (1986)

Steady State Satiation
1+a(b+c)N−

√
1+aN(2(b+c)+aN(b−c)2)

2abcN Jeschke et al. (2002)

Tyutyunov–Titova–Arditi aN
P/P0+exp[−P/P0]+ahN Tyutyunov et al. (2008)

Barbier–Wojcik–Loreau II aNuP v/P Barbier et al. (2021)
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S2 Fisher Information matrix

As described in Box 1, the unit Fisher Information matrix IM (θ) used to compute geometric
complexity is a k × k matrix comprising the expected values of the second-order derivatives of
the model’s negative log-likelihood function with respect to each of its k parameters (Pitt et al.,
2002; Rissanen, 1996). As an example, for a one-parameter model with n = 2 experimental
treatments this “matrix” is given by

IM (θ) = −1

2
E
[
∂

∂θ

∂

∂θ
lnL(θ| {y1, y2})

]
(S1)

which for discrete outcomes is equivalent to

IM (θ) = −1

2

∑
{y1,y2}

p ({y1, y2} |θ)
[
∂

∂θ

∂

∂θ
lnL(θ| {y1, y2})

]
, (S2)

and the sum is across the Fisher information for all potentially observable outcomes {y1, y2}
weighted by their probability of being observed given the value of θ. When assuming a Poisson
statistical model for the observations, we can rewrite Eq. (S1) as

IM(θ) = −1

2
E

[
∂

∂θ

∂

∂θ

(
−

2∏
i=1

ln (yi!) +
2∑

i=1

(ln(λi)yi − λi)

)]
, (S3)

recalling that λi is a function of parameter θ as determined by the functional-response model
M . The first term from the log-likelihood drops out upon differentiating because it does not
depend on θ, leaving

IM(θ) = −1

2
E

[
∂

∂θ

∂

∂θ

(
2∑

i=1

(ln(λi)yi − λi)

)]
, (S4)

which because of linearity of the expected value and differentiation is equivalent to

IM(θ) = −1

2

2∑
i=1

E
[
∂

∂θ

∂

∂θ
(ln(λi)yi − λi)

]
. (S5)

This implies that the Fisher information of multiple independent outcomes is the average of
the Fisher information computed separately for each random outcome. Though this example
focuses on a hypothetical model with a single parameter (i.e. k = 1), the same holds true for
more complex models where θ is a vector because the expectation is calculated separately for
each element in the Fisher information matrix (Pitt et al., 2002; Rissanen, 1996).
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S3 Model identifiability

When fitting any model to data, it is vitally important that the experimental design allow
inference of all underlying model parameters (Beck & Arnold, 1977; Cole, 2020; Shapiro, 1986).
For example, one cannot fit a linear regression model of the form y = α+ βx without variation
in the predictor variable x. Likewise, one cannot uniquely identify the parameters of a linear
regression model of the form y = α1 + α2 + βx, because any equivalent sum of α1 + α2 will
produce equivalent results.

For our purposes, geometric flexibility G vanishes when any two parameters capture re-
dundant information and are not uniquely identifiable statistically. In order to evaluate the
identifiability of the parameters within the various functional-response models for our synthetic
experimental designs, we followed the following process. For simplicity, we will use the three-
parameter Beddington–DeAngelis (BD) model (Beddington, 1975; DeAngelis et al., 1975) for
our example.

First, we computed the partial derivatives of the predicted number of eaten prey given the
functional-response model (i.e. λ = F (N,P, θ)PT ) with respect to the model parameters. For
the BD model, this produces

∂λ

∂a
=

NPT (1 + c(P − 1))

(1 + abN + c(P − 1))2
(S6)

∂λ

∂b
= − a2N2PT

(1 + abN + c(P − 1))2
(S7)

∂λ

∂c
= − aNP (P − 1)T

(1 + abN + c(P − 1))2
. (S8)

We then construct a matrix Z arranged with the model parameters along the columns, a row
for each of the N × P treatment combinations in the experimental design, and whose elements
are the values of these partial derivatives with N and P replaced by their corresponding values.
For example, given an experimental design that features two prey levels, N ∈ {1, 2}, and two
predator levels, P ∈ {1, 2}, this matrix is

Z =


T

(1+ab)2
− a2T

(1+ab)2
0

2(1+c)T

(1+ab+c)2
− 2a2T

(1+ab+c)2
− 2aT

(1+ab+c)2

2T
(1+2ab)2

− 4a2T
(1+2ab)2

0
4(1+c)T

(1+2ab+c)2
− 8a2T

(1+2ab+c)2
− 4aT

(1+2ab+c)2

 . (S9)

In order for all parameters to be identifiable, the rank of Z must be equal to the number of free
parameters (Beck & Arnold, 1977; Cole, 2020; Shapiro, 1986). In the case of Eq. (S9), the rank
of Z is 3 implying that the experimental design is sufficient to inform estimates of a, b, and c in
the BD model.

When the sets of partial derivatives in any two (or more) columns are linearly dependent,
this implies that the corresponding parameters are not identifiable. For example, the matrix
that arises with an experimental design that features two prey levels, N ∈ {1, 2}, and only one
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predator level, P ∈ {1}, is

Z =

 T
(1+ab)2

− a2T
(1+ab)2

0

2T
(1+2ab)2

− 4a2T
(1+2ab)2

0

 , (S10)

which implies that the parameter c is non-identifiable because the third column in Eq. (S10) is
linearly dependent on both the first and second columns. In this example, given the experimental
design, the non-identifiable nature of parameter c should not be all that surprising: c is meant
to capture interference between predators, but with only ever a single predator individual (i.e.
P = 1) there can be no interference effect to estimate.

That said, the linear dependence and non-identifiability of c is not simply a product of the
chosen predator abundance level. Indeed, parameter c will never be identifiable in an experi-
mental design that features only one predator level. With an experimental design that features
two prey levels, N ∈ {1, 2}, and only one predator level, P ∈ {2}, the matrix is

Z =

 2(1+c)T

(1+ab+c)2
− 2a2T

(1+ab)2
− 2aT

(1+ab+c)2

4(1+c)T

(1+2ab+c)2
− 8a2T

(1+2ab)2
− 4aT

(1+2ab+c)2

 , (S11)

and the third column is again linearly dependent on the first by a factor of −1+c
a . This is

because parameter identifiability also requires sufficient potential variation along the direction
determined by each parameter, and without appropriate treatment levels there is no “slope”
that can be robustly inferred (Beck & Arnold, 1977; Cole, 2020; Shapiro, 1986).
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Figure S1: Model identifiability as a function of Nmax and Pmax.
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S4 Experimental designs

Each nested pair of vectors reflects the abundances of the prey (first vector) and of the predator
(second vector) for a given experimental design. Variable designs vary the maximum number of
prey and predator individuals (Nmax and Pmax) by correspondingly varying the number of prey
and predator levels (LN and LP ). Fixed designs vary only the number of prey and predator
levels (LN and LP ) by keeping the maximum number of prey and predator individuals constant.
The arithmetic designs consist of uniform (rather than logarithmic) spacings and are variable
designs.

S4.1 Logarithmic designs

S4.1.1 Variable designs

{{3, 4, 7, 13, 21}, {1}} {{3, 4, 7, 13, 21}, {1, 2}} {{3, 4, 7, 13, 21}, {1, 2, 3}}
{{3, 4, 7, 12, 20, 34}, {1}} {{3, 4, 7, 12, 20, 34}, {1, 2}} {{3, 4, 7, 12, 20, 34}, {1, 2, 3}}

{{3, 4, 7, 12, 20, 33, 55}, {1}} {{3, 4, 7, 12, 20, 33, 55}, {1, 2}} {{3, 4, 7, 12, 20, 33, 55}, {1, 2, 3}}
{{3, 4, 7, 12, 20, 32, 54, 89}, {1}} {{3, 4, 7, 12, 20, 32, 54, 89}, {1, 2}} {{3, 4, 7, 12, 20, 32, 54, 89}, {1, 2, 3}}

{{3, 4, 7, 12, 19, 32, 53, 87, 144}, {1}} {{3, 4, 7, 12, 19, 32, 53, 87, 144}, {1, 2}} {{3, 4, 7, 12, 19, 32, 53, 87, 144}, {1, 2, 3}}
{{3, 4, 7, 12, 19, 32, 52, 86, 141, 233}, {1}} {{3, 4, 7, 12, 19, 32, 52, 86, 141, 233}, {1, 2}} {{3, 4, 7, 12, 19, 32, 52, 86, 141, 233}, {1, 2, 3}}

{{3, 4, 7, 13, 21}, {1, 2, 3, 5}} {{3, 4, 7, 13, 21}, {1, 2, 3, 5, 8}}
{{3, 4, 7, 12, 20, 34}, {1, 2, 3, 5}} {{3, 4, 7, 12, 20, 34}, {1, 2, 3, 5, 8}}

{{3, 4, 7, 12, 20, 33, 55}, {1, 2, 3, 5}} {{3, 4, 7, 12, 20, 33, 55}, {1, 2, 3, 5, 8}}
{{3, 4, 7, 12, 20, 32, 54, 89}, {1, 2, 3, 5}} {{3, 4, 7, 12, 20, 32, 54, 89}, {1, 2, 3, 5, 8}}

{{3, 4, 7, 12, 19, 32, 53, 87, 144}, {1, 2, 3, 5}} {{3, 4, 7, 12, 19, 32, 53, 87, 144}, {1, 2, 3, 5, 8}}
{{3, 4, 7, 12, 19, 32, 52, 86, 141, 233}, {1, 2, 3, 5}} {{3, 4, 7, 12, 19, 32, 52, 86, 141, 233}, {1, 2, 3, 5, 8}}

S4.1.2 Fixed designs

{{3, 8, 25, 76, 233}, {1}} {{3, 8, 25, 76, 233}, {1, 5}}
{{3, 6, 16, 39, 95, 233}, {1}} {{3, 6, 16, 39, 95, 233}, {1, 5}}

{{3, 6, 12, 25, 52, 110, 233}, {1}} {{3, 6, 12, 25, 52, 110, 233}, {1, 5}}
{{3, 5, 9, 18, 34, 65, 123, 233}, {1}} {{3, 5, 9, 18, 34, 65, 123, 233}, {1, 5}}

{{3, 5, 8, 14, 25, 43, 76, 133, 233}, {1}} {{3, 5, 8, 14, 25, 43, 76, 133, 233}, {1, 5}}
{{3, 4, 7, 12, 19, 32, 52, 86, 141, 233}, {1}} {{3, 4, 7, 12, 19, 32, 52, 86, 141, 233}, {1, 5}}

{{3, 8, 25, 76, 233}, {1, 2, 5}} {{3, 8, 25, 76, 233}, {1, 2, 3, 5}}
{{3, 6, 16, 39, 95, 233}, {1, 2, 5}} {{3, 6, 16, 39, 95, 233}, {1, 2, 3, 5}}

{{3, 6, 12, 25, 52, 110, 233}, {1, 2, 5}} {{3, 6, 12, 25, 52, 110, 233}, {1, 2, 3, 5}}
{{3, 5, 9, 18, 34, 65, 123, 233}, {1, 2, 5}} {{3, 5, 9, 18, 34, 65, 123, 233}, {1, 2, 3, 5}}

{{3, 5, 8, 14, 25, 43, 76, 133, 233}, {1, 2, 5}} {{3, 5, 8, 14, 25, 43, 76, 133, 233}, {1, 2, 3, 5}}
{{3, 4, 7, 12, 19, 32, 52, 86, 141, 233}, {1, 2, 5}} {{3, 4, 7, 12, 19, 32, 52, 86, 141, 233}, {1, 2, 3, 5}}

S4.2 Arithmetic designs

{{3, 8, 12, 16, 21}, {1}} {{3, 8, 12, 16, 21}, {1, 2}} {{3, 8, 12, 16, 21}, {1, 2, 3}}
{{3, 9, 15, 22, 28, 34}, {1}} {{3, 9, 15, 22, 28, 34}, {1, 2}} {{3, 9, 15, 22, 28, 34}, {1, 2, 3}}

{{3, 12, 20, 29, 38, 46, 55}, {1}} {{3, 12, 20, 29, 38, 46, 55}, {1, 2}} {{3, 12, 20, 29, 38, 46, 55}, {1, 2, 3}}
{{3, 15, 28, 40, 52, 64, 77, 89}, {1}} {{3, 15, 28, 40, 52, 64, 77, 89}, {1, 2}} {{3, 15, 28, 40, 52, 64, 77, 89}, {1, 2, 3}}

{{3, 21, 38, 56, 74, 91, 109, 126, 144}, {1}} {{3, 21, 38, 56, 74, 91, 109, 126, 144}, {1, 2}} {{3, 21, 38, 56, 74, 91, 109, 126, 144}, {1, 2, 3}}
{{3, 29, 54, 80, 105, 131, 156, 182, 207, 233}, {1}} {{3, 29, 54, 80, 105, 131, 156, 182, 207, 233}, {1, 2}} {{3, 29, 54, 80, 105, 131, 156, 182, 207, 233}, {1, 2, 3}}

{{3, 8, 12, 16, 21}, {1, 2, 4, 5}} {{3, 8, 12, 16, 21}, {1, 3, 4, 6, 8}}
{{3, 9, 15, 22, 28, 34}, {1, 2, 4, 5}} {{3, 9, 15, 22, 28, 34}, {1, 3, 4, 6, 8}}

{{3, 12, 20, 29, 38, 46, 55}, {1, 2, 4, 5}} {{3, 12, 20, 29, 38, 46, 55}, {1, 3, 4, 6, 8}}
{{3, 15, 28, 40, 52, 64, 77, 89}, {1, 2, 4, 5}} {{3, 15, 28, 40, 52, 64, 77, 89}, {1, 3, 4, 6, 8}}

{{3, 21, 38, 56, 74, 91, 109, 126, 144}, {1, 2, 4, 5}} {{3, 21, 38, 56, 74, 91, 109, 126, 144}, {1, 3, 4, 6, 8}}
{{3, 29, 54, 80, 105, 131, 156, 182, 207, 233}, {1, 2, 4, 5}} {{3, 29, 54, 80, 105, 131, 156, 182, 207, 233}, {1, 3, 4, 6, 8}}
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S5 Results for fixed logarithmic designs

Figures S2–S5 show the effect of varying only the number of prey and predator levels (LN and
LP ) by keeping the maximum number of prey and predator individuals constant. For these fixed
designs, we set the maximum possible values of Nmax and Pmax to be 233 prey and 5 predator
individuals (based on results observed for the variable designs, as presented in the main text)
and then varied LN between 5 and 10 prey levels and LP between 1 and 4 predator levels. As for
the variable designs presented in the main text, the spacing of prey (and predator) abundances
followed a logarithmic series using the golden ratio as the logarithmic base.

S6 Results for arithmetic experimental designs

Figures S6–S9 present the results for arithmetic experimental designs that used a uniform (rather
than logarithmic) spacing of prey and predator abundances and varied the maximum number of
prey and predator individuals (Nmax and Pmax) by correspondingly varying the number of prey
and predator levels (LN and LP ) (i.e. including additional, higher abundance levels to smaller
designs).
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Predator levels (LP)
1 2 3 4

Figure S2: First panel : Absolute and relative geometric complexity for the one-parameter

(k = 1) models as a function of the experiment’s number of treatment levels (LN and LP ).
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Predator levels (LP)
1 2 3 4

Figure S3: Absolute and relative geometric complexity for the two-parameter (k = 2) models

as a function of the experiment’s number of treatment levels (LN and LP ).
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Predator levels (LP)
1 2 3 4

Figure S4: Absolute and relative geometric complexity for the three-parameter (k = 3) models

as a function of the experiment’s number of treatment levels (LN and LP ).
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Predator levels (LP)
1 2 3 4

Figure S5: Absolute and relative geometric complexity for the four-parameter (k = 4) models

as a function of the experiment’s number of treatment levels (LN and LP ).
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Max. predator abundance (Pmax)
1 2 3 5 8

Figure S6: Absolute and relative geometric complexity for the one-parameter (k = 1) models

with arithmetic spacing of prey and predator abundances.
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Max. predator abundance (Pmax)
1 2 3 5 8

Figure S7: Absolute and relative geometric complexity for the two-parameter (k = 2) models

with arithmetic spacing of prey and predator abundances.
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Max. predator abundance (Pmax)
1 2 3 5 8

Figure S8: Absolute and relative geometric complexity for the three-parameter (k = 3) models

with arithmetic spacing of prey and predator abundances..
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Max. predator abundance (Pmax)
1 2 3 5 8

Figure S9: Absolute and relative geometric complexity for the four-parameter (k = 4) models

with arithmetic spacing of prey and predator abundances.
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S7 Results for logarithmic designs with E[F (Nmax, P, θ)PT ] ≥ 1/10 constraint

Figures S10–S13 present the results for logarithmic experimental designs on which the constraint
on the minimum expected number of eaten prey was decreased by an order of magnitude from
E[F (Nmax, P, θ)PT ] ≥ 1 to E[F (Nmax, P, θ)PT ] ≥ 1/10.

Max. predator abundance (Pmax)
1 2 3 5 8

Figure S10: Absolute and relative geometric complexity for the one-parameter (k = 1) models

with the constraint on the expected minimum number of eaten prey in the Nmax treatments

being decreased by an order of magnitude (i.e. E[F (Nmax, P, θ)PT ] ≥ 1/10).
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Max. predator abundance (Pmax)
1 2 3 5 8

Figure S11: Absolute and relative geometric complexity for the two-parameter (k = 2) models

with the constraint on the expected minimum number of eaten prey in the Nmax treatments

being decreased by an order of magnitude (i.e. E[F (Nmax, P, θ)PT ] ≥ 1/10).
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Max. predator abundance (Pmax)
1 2 3 5 8

Figure S12: Absolute and relative geometric complexity for the three-parameter (k = 3) models

with the constraint on the expected minimum number of eaten prey in the Nmax treatments

being decreased by an order of magnitude (i.e. E[F (Nmax, P, θ)PT ] ≥ 1/10).
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Max. predator abundance (Pmax)
1 2 3 5 8

Figure S13: Absolute and relative geometric complexity for the four-parameter (k = 4) models

with the constraint on the expected minimum number of eaten prey in the Nmax treatments

being decreased by an order of magnitude (i.e. E[F (Nmax, P, θ)PT ] ≥ 1/10).
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S8 Results for logarithmic designs with E[F (N,P, θ)PT ] ≤ 10Nmax constraint

Figures S14–S17 present the results for logarithmic experimental designs on which the constraint
on the maximum expected number of eaten prey was increased by an order of magnitude from
E[F (N,P, θ)PT ] ≤ Nmax to E[F (N,P, θ)PT ] ≤ 10Nmax.

Max. predator abundance (Pmax)
1 2 3 5 8

Figure S14: Absolute and relative geometric complexity for the one-parameter models (k = 1)

with the constraint on the expected maximum number of eaten prey increased by an order of

magnitude (i.e. E[F (N,P, θ)PT ] ≤ 10Nmax).
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Max. predator abundance (Pmax)
1 2 3 5 8

Figure S15: Absolute and relative geometric complexity for the two-parameter models (k = 2)

with the constraint on the expected maximum number of eaten prey increased by an order of

magnitude (i.e. E[F (N,P, θ)PT ] ≤ 10Nmax).
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Max. predator abundance (Pmax)
1 2 3 5 8

Figure S16: Absolute and relative geometric complexity for the three-parameter models (k = 3)

with the constraint on the expected maximum number of eaten prey increased by an order of

magnitude (i.e. E[F (N,P, θ)PT ] ≤ 10Nmax).
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Max. predator abundance (Pmax)
1 2 3 5 8

Figure S17: Absolute and relative geometric complexity for the four-parameter models (k = 4)

with the constraint on the expected maximum number of eaten prey increased by an order of

magnitude (i.e. E[F (N,P, θ)PT ] ≤ 10Nmax).
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S9 Geometric complexity in non-replacement experiments

Our analyses of the main text only considered experimental designs in which eaten prey are
continually replaced (or in which prey abundance is sufficiently well approximated by a constant
value). Based on our own recent compilations of published functional-response data sets and
consideration of replacement and non-replacement models, replacement designs are the more
commonly used design and have more desirable statistical properties (Novak & Stouffer, 2021;
Stouffer & Novak, 2021; as well as and citations therein). However, many studies do use non-
replacement experimental designs.

Given that a binomial likelihood (appropriate for non-replacement studies) introduces addi-
tional non-linearity in the statistical model that is not present when using a Poisson likelihood
(Novak & Stouffer, 2021), we expect non-replacement models to generally exhibit even greater
variation in flexibility than observed in our main analysis. Unfortunately, most models applied
to non-replacement scenarios do not have a closed-form solution and must be integrated numer-
ically. Their likelihood function is therefore also not analytically accessible, making calculation
of their FIA analytically intractable.

That said, a few functional-response models do have closed-form solutions in non-replacement
scenarios. Of these, the most frequently assessed are the analogues to Holling’s H2 and H3
replacement models: the Type II random predator equation of Rogers (1972) and its Type III
form (Kratina et al., 2009; Okuyama & Ruyle, 2011)1. These respectively describe the expected
proportion of initial prey that are eaten as

pR2 = 1− 1

ahN0
W0

(
ahN0e

−a(PT−hN0)
)
, (S12)

where W0(x) represents the Lambert W function and N0 is the prey’s abundance at the start
of the experiment, and

pR3 =
S −

√
S2 − 4a2hN3

0PT

2ahN2
0

=
2aN0PT

S +
√
S2 − 4a2hN3

0PT
, (S13)

where S = 1 + aN0PT + ahN2
0 . Note that the first given form of Eqn. (S13) is the original

form derived by Kratina et al. (2009) and Okuyama & Ruyle (2011) while the second form is
an equivalent solution arrived at using the Citardauq formula (which we implemented).

A comparison of these two models for “variable” experimental designs (Fig. S18) indicates
that Rogers’ Type III is uniformly more flexible than Rogers’ Type II (though less so than is
H3 over H2), that their difference in flexibility increases with maximum prey abundances Nmax

(in contrast to H2 and H3 whose difference is insensitive to Nmax), and that their difference is
insensitive to maximum prey abundance Pmax (consistent with H2 and H3). Their comparison
for “fixed” experimental designs (Fig. S19) indicates that the greater flexibility of Rogers’ Type
III decreases with the number of prey treatment levels LN for low PN , but is relatively insensitive
to LN for large PN designs (in contrast to H2 and H3 whose difference slightly increases with
LN and in insensitive to variation in PN ).

1Note that the Type III solution of Juliano (2001) inappropriately assumes that the number of prey remaining
over time can be approximated by the number of prey at the start of the experiment (Rosenbaum & Rall, 2018).
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Max. predator abundance (Pmax)
1 2 3 5 8

Figure S18: The geometric complexity of Rogers’ random predator equation (the closed-form

non-replacement analogue to the H2 model) and the relative geometric complexity of its Type

III equivalent (the closed-form non-replacement analogue to the H3 model) for non-replacement

experimental designs varying in the maximum number of (initial) prey and predator individuals

(Nmax and Pmax).
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Predator levels (LP)
1 2 3 4

Figure S19: As in Fig. S18 but for experimental designs varying in the number of treatment

levels (LN and LP ).
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