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Figure S1: The estimated strength of consumer interference assuming the Arditi-Akcakaya model, with
datasets ordered by their sample size and differentiated by covariate information. Non-replacement stud-
ies are designated as incurring significant prey depletion when more than 10% of replicates had more
than 90% of available prey consumed. We infer that consumer type, prey depletion, and replacement
scenario are not confounded with sample size.
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S2 Summary of prior syntheses

Several notable syntheses of consumer-dependent functional-response experiments have been performed
over the decades. Here we briefly summarize these syntheses to highlight their assumed statistical models
and the varied sample sizes of the datasets they considered.

Hassell & Varley (1969) and Hassell (1971) analyzed 9 datasets having sample sizes ranging from
~16 to 84 replicates. They provided evidence for consumer dependence by applying ordinary linear
least squares regression to log-transformed ‘area of discovery’ (i.e. attack rate) estimates inferred from
counts of the number of hosts surviving parasitism as a function of parasite abundance and initial host
abundance assuming linear prey dependence and multiplicative consumer dependence.

Arditi & Akgakaya (1990) showed how the Hassell & Varley approach will underestimate inter-
ference when consumers experience non-negligible handling times or when parasites can discriminate
among already parasitized and non-parasitized hosts. They compiled 15 datasets of predators and par-
asitoids having sample sizes ranging from 9 to 75 and used both linear and nonlinear least squares re-
gression in estimating the multiplicative effect of consumer abundance on log-transformed attack rates,
which were themselves each estimated on the basis of Holling Type II prey dependence at fixed predator
abundances.

Skalski & Gilliam (2001) compiled a total of 19 datasets having sample sizes ranging from 5 to
120 (they used treatment means as data for most datasets). They evaluated the relative performance of
several alternative prey-, ratio- and consumer-dependent functional-response models — including mul-
tiplicative and additive models of consumer dependence — using the bootstrap-estimated confidence
intervals of parameter point estimates (for nested models differing in their number of parameters, k)
and likelihood-ratio tests (when comparing equal-k£ models). Their model-fitting used the method of
maximum likelihood assuming log-normally distributed feeding rate residuals (i.e. minimizing squared
differences between observed and predicted values, analogous to least squares regression).

Most recently, DeLong & Vasseur (2011) focused on the Arditi-Ak¢akaya model and combined esti-
mates of m reported in the literature (including those of prior syntheses and studies published thereafter)
with estimates obtained by (re-)analyzing many datasets for a total of 51 datasets with sample sizes rang-
ing from 9 to greater than 179. In estimating interference strength, they applied four methods — including
those of Hassell & Varley (1969) and Arditi & Ginzburg (1989) — using ordinary least squares regression
and either log-transformed feeding rate or attack rate estimates as the response variable. (Their analysis
also included 9 datasets entailing metabolic rate as the response variable.)

S3 Model flexibility as judged by the Fisher Information Approximation

We consider model flexibility through the lens of the Minimum Description Length principle as imple-
mented via the Fisher Information Approximation (FIA). We refer readers to Myung et al. (2006), Ly
et al. (2017) and references therein for more extensive summaries and further details.

Derived by Rissanen (1996), FIA is one of many information criterion similar to A/C and AIC, that
penalize the likelihood of a fitted statistical model by its complexity. While AIC and AIC, do so purely
on the basis of the model’s k free parameters and the sample size n of the data (for the latter), FIA does
so by also considering the model’s mathematical flexibility with respect to the structure of the data. That



is,

AIC = —2InL(0)y) + 2k (S1)
2% (k +1)
—k—1

FIA = —mﬁw@)-%gm(gg +1n/M@mMmda (S3)
0

AIC.= —2InL(fly) + 2k+ (S2)

The first term of each criterion is the negative log-likelihood of the model (with parameter(s) ) given
the data y. It reflects a measure of the model’s goodness-of-fit to the data. The second term of each
criterion reflects the model’s parametric complexity (a.k.a. its dimensionality), which is independent of
the data beyond the influence of n. The third term of AIC, is a correction factor for A/C’s mis-estimation
of parametric complexity at low sample sizes.

The third term of FIA reflects the model’s flexibility (a.k.a. its geometric or structural complexity).
The Expected Fisher information matrix I(6) in the third term of FIA is calculated as the expectation of
the Fisher information matrix, which may itself be calculated as the Hessian of the model’s negative log-
likelihood function (taking second-order derivatives of the function with respect to each of the model’s
parameters). The domain of the integral in the third term reflects the range of values that the model’s
parameters may exhibit; for some models this integral may not be finite and for some experimental de-
signs the range of empirically observable parameter values may be more restricted than is mathematically
conceivable.

A model’s flexibility as assessed by FIA therefore reflects both its functional form (as encapsulated by
1(0)) and the range of parameter values which are considered empirically possible. Through 7(6), flex-
ibility is sensitive to the experimental design (i.e. treatment levels) and the identifiability of the model’s
parameters (i.e. how much information they share). The same two models can exhibit different relative
amounts of flexibility for different experimental designs. However, different parameterizations of the
same functional form (e.g., the Holling and Michaelis-Menten forms of the Type II functional response)
will exhibit the same flexibility for a given experimental design when the permissible range of their
parameters is equivalently limited.

S4 Model performance as judged by AIC & BIC

As noted in Box 1 of the main text, AIC (eqn. S1) has become the most frequently used information
criterion for evaluating relative model performance (Aho et al., 2014). It estimates the expected relative
Kullback-Leibler divergence of a focal model from the true model responsible for generating the data.
AIC, (eqn. S2) incorporates a correction for the bias that AIC exhibits in this estimation at small sample
sizes, imposing a greater penalty on a model’s parametric complexity than does AIC. The difference
between AIC and AIC, diminishes as sample size increases.

The most commonly used alternative criterion to AIC is the Bayesian Information Criterion, BIC
(a.k.a. Schwarz Information Criterion; Schwarz, 1978), calculated as

BIC = —-2InL(0ly) + kln(n). (S4)

Just as in eqns. S1-S3, the first term of eqn. S4 describes the model’s goodness-of-fit per its likelihood,
and the second term measures the model’s parametric complexity. Unlike for AIC and AIC,, but similar

7



Table S2: The number of datasets for which each functional response model achieved a given rank
relative to all other models as judged by AIC or by BIC.
Rank HI H2 BD CM LR HV AG AA

AIC
1 2 2 10 24 0 5 14 20
2 0 1 35 11 0 1 10 19
3 0 1 19 17 2 4 7 27
4 1 14 8 19 1 1 24 9
5 3 28 2 3 4 24 12 1
6 9 4 3 3 18 37 2 1
7 34 19 0 0 12 5 7 0
8 28 0 0 40 O 1 0

BIC
1 3 3 7 23 0 4 21 16
2 0 1 34 11 1 2 8 20
3 0 1 22 17 1 4 4 28
4 0 14 8 20 1 1 23 10
5 3 27 3 3 4 24 11 2
6 10 3 3 3 18 37 2 1
7 33 20 O 0 12 5 7 0
8 28 8 0 0 40 O 1 0

to FIA (Section S3), a model’s parametric complexity as estimated by BIC increases with sample size n.
Asymptotically, BIC converges to twice the value of FIA as sample size increases (Myung, 2000).

The debate over whether to use AIC versus BIC for judging model performance runs deep among
ecologists, and among statisticians more generally as well (Aho et al., 2014; Vrieze, 2012). Philosophi-
cally speaking, the two criteria differ most fundamentally in their intended purpose. AIC is designed to
select the best out-of-sample predictive model; given certain assumptions, it is asymptotically efficient
as sample size increases (Shibata, 1983). In contrast, BIC is designed to select the true model; given
certain assumptions, it is asymptotically consistent as sample size increases (Schwarz, 1978). Among
their differing assumptions is that BIC presumes the true model to be among the considered models while
AIC does not. Pragmatically speaking, BIC penalizes complex models to a greater extent than does AIC
(when n > 8) and therefore favors models with fewer parameters.

Although these and other distinctions between the two criteria (and others) are important and directly
relevant to the varied purposes that motivate the study of consumer functional responses, we do not seek
to rehash nor weigh in on the debate over their use here. We do point out that although it has become
common in some ecological subfields to apply both criteria and to interpret the strength of inferences
accordingly, others have argued forcefully against this (Aho et al., 2014). Nonetheless, for comparison
purposes, and having chosen to present the results of AIC, in the main text due to its convergence on the
predominantly-used criterion, AIC, we present the results of repeating our assessment of small sample
size model-comparison bias for AIC and BIC (Table S2 and Figs. S2-S3). These generally bear out the
expected favoring of simpler models by BIC relative to AIC. More importantly, they also evince the small
sample size model-comparison bias that is expected for both criteria because both are only asymptotically
optimal as sample size increases.
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Figure S2: The rank-order performance of functional-response models as judged by (A) AIC and (B)
BIC, with datasets ordered by their sample size. The gray region in (A) and (B) demarcates models

interpreted as having equivalent support to the top model (i.e. AAIC < 2 or ABIC < 2).
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Figure S3: The effect of sample size on the proportion of datasets for which each of the considered
functional-response models was ranked as (A) first or (B) second as judged by AIC, and as (C) first
or (D) second as judged by BIC. In each panel, more and more datasets are included in the pool of
considered datasets as the maximum considered sample size increases from left to right, starting with
all datasets having sample sizes of 20 or less. Tick-marks reflect the distribution of sample sizes greater
than 20. Note that a model’s rank is not equivalent to the support for that model because lower-ranked
models may have equivalent support.
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S5 Arditi and Akcakaya method for estimating interference strengths

We also employed the method used by Arditi & Akcakaya (1990) to assess the degree to which past
inferences using this method may have been influenced by parameter estimation bias. Although more
recent studies suggest that the sequential nature of their approach is subject to additional forms of esti-
mation bias (e.g., Uszko et al., 2020), Arditi and Ak¢akaya used their approach (“method 2”) to avoid
the underestimation of interference associated with the use of the Hassell-Varley model when feeding
rates saturate at high prey abundances.

The method requires discrete consumer abundance levels (treatments) with variation in prey abun-
dances within each, and hence could only be applied to a subset of experimental datasets in our compila-
tion. It entails the estimation of attack rates for each consumer abundance level assuming a Holling Type
IT model with a single handling time parameter that is common to all levels. In applying the approach, we
assumed either a within-level binomial or Poisson distribution, as appropriate based on non-replacement
or replacement, rather than using nonlinear least squares as done by Arditi & Akgakaya (1990). The
interference parameter m is subsequently estimated by the slope of a weighted linear least squares re-
gression of log-transformed attack rates on consumer abundances, weighting each attack rate estimate
by the inverse of its estimated variance. In a few cases where a given attack rate’s variance could not be
estimated, we used twice the value of the largest variance observed among the other attack rate estimates
to weight the given attack rate’s value.

As illustrated in Fig. S4, the Arditi and Akcakaya method underestimated interference strengths only
slightly for most datasets (relative to the methods of our main text), and provided anomalously small
estimates for some datasets. Although the number of datasets is much reduced, the sample size bias of
interference estimates remains apparent (Fig. S5)
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Figure S4: Interference strengths (m) as estimated using the methods of the main text compared to those
obtained with the method used by Arditi & Akcakaya (1990) for the subset of datasets to which the latter
could be applied.
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Figure S5: The strength of consumer interference as estimated with the method used by Arditi &
Akcakaya (1990) for the datasets to which this method could be applied. Datasets are ordered by their
sample size.
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S6 Dispersion and nuisance parameters as sources of bias

Aside from issues of bias associated with the mathematical forms of alternative functional-response
models discussed in the main text, there are also issues of bias associated with their statistical forms.
More specifically, while the debate over consumer-dependent functional responses has centered on the
first-principles validity and the performance of alternative deterministic models (Abrams, 2015; Arditi
& Ginzburg, 2012), necessary discussions of the assumed formulation of the associated probabilistic
models used in fitting models to data have been left on the periphery (Barraquand, 2014; Trexler et al.,
1988).

Our use of binomial and Poisson likelihood models, for example, has become standard for fitting
functional responses because they more appropriately represent the generative process underlying ob-
served counts of eaten prey at the scales at which most experiments are conducted (Bolker, 2008; Trexler
et al., 1988). Unlike for the Normal likelihood, the expected number of prey eaten is constrained to be
positive for the Poisson and binomial, even at the low prey densities necessitated by functional-response
experiments (Sarnelle & Wilson, 2008). The Poisson and binomial also do not prescribe the feeding
propensities of individual consumers to be self-multiplicative as is assumed under the log-Normal like-
lihood, which has seen much use in prior functional-response syntheses. Rather, both the Poisson and
binomial distributions become approximately normal only when the expected number of prey eaten is
large.

Nevertheless, Fenlon & Faddy (2006) and others have argued for the use of likelihood models like
the beta-binomial and the negative binomial as respective alternatives to the binomial and Poisson in
fitting functional-response models. This is because use of binomial and Poisson likelihoods assumes
that all prey individuals have an equal and temporally constant density-dependent probability of being
eaten by each consumer. More specifically, the binomial and Poisson assume the variance in the data to
be proportional to the mean, which is often not true for functional responses (e.g., Papanikolaou et al.,
2016). (It is only as the number of successes, k, becomes large that the variance of the negative binomial,
w12 / k, approaches its mean whereby it approaches the Poisson distribution; this occurs approximately
k > 10.) Greater-than-expected variance can bias parameter estimates when it is ignored, so use of the
beta-binomial and the negative binomial is easily justified. On the other hand, the additional dispersion
parameter introduced by the beta-binomial and the negative binomial to separate the variance from the
mean can also bias the point estimates of the focal functional response parameters of interest when
sample sizes are low, and can suck up variation in the data to artificially shrink their inferred uncertainty.
This applies to the standard deviation parameter of the normal distribution as well.

Although the fitting of models using beta-binomial or negative binomial likelihoods to account for
over-dispersion did not alter our primary inferences regarding the sample size dependent bias of model
comparisons and parameter estimation, and are therefore omitted from our presentation, many datasets
do show evidence over-dispersion. We therefore echo Fenlon & Faddy (2006) and Billiard et al. (2018)
in encouraging future work to better characterize and utilize both the mean and variance of consumer
functional responses.

S7 Maximum likelihood estimators
We here provide derivations of the maximum likelihood estimators (MLEs) for the parameters of a rep-

resentative set of functional-response models to evidence the nature of their estimation bias. We follow
the heuristic simplification of Box (1971) in assuming that independent replicate observations are made
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at a single treatment level having N available prey and P consumers. However, the qualitative nature of
the bias that we infer for each of the MLE:s is not specific to this assumption.

We provide derivations for each of three likelihood models, considering the counts (or proportions) of
prey eaten to be random variables drawn from either a Poisson, a binomial, or a (log-)normal distribution.
The Poisson applies when eaten prey are continually replaced. The binomial applies when eaten prey are
not replaced (and for which IV reflects the initial number of available prey). The normal and log-normal
are typically used when the Poisson and binomial are not applicable because feeding data are expressed
as continuous rates rather than counts of prey eaten. In principal, both may be applied in situations where
eaten prey are replaced and when eaten prey are not replaced.

For clarity, we first provide MLE derivations for each distribution’s generic parameter(s), then ap-
ply the same procedures in deriving the MLEs for the parameters of each functional-response model.
Throughout we use y; to represent the ith of n total data points. We use F'(N, P, T, 0) to represent a
given functional-response model with parameter(s) 6. The function F'(N, P, T, ) gives the expected
number of prey eaten by P consumers in the experimental time period 1" given an (initial) abundance of
N prey.

S7.1 Poisson

The Poisson distribution has a single parameter, A, reflecting the expected number of events as well as
their variance. Given the Poisson’s probability mass function

AVe~A
fylA) = o (S5)
y!
its likelihood function is given by
- o \Vie™A ATy vi
L )\Z/ = f Yi) = —_— :ein)‘ni (S6)
) £[1 () £[1 yi! Hi:l y;!

such that its log-likelihood is given by

In L(A|y) = —nA + Zyi In(A\) —In (H yi!> . (S7)
i=1 i=1

The MLE, ), is obtained by finding the maximum of the log-likelihood and solving for A:

dInL(Ay) 1 B
- _—n+A;yz— (S8)
n

Hence, for the Poisson, A corresponds to the arithmetic mean of the data, §. We obtain the MLEs for the
parameters of any given functional response by substituting A = F'(N, P, T, 0) into the likelihood.
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Holling Type I

A= F(N,P,T,0) = aNPT (S10)
In £(0ly) = —n(aNPT) + In(aNPT) ) "y, —In (H yﬂ) (S11)
=1 =1
d In L(0]y) l —
—— T — NPT += vy = 12
- nNPT + - ;y 0 (812)

nNPT NPT

To determine the bias in @ we determine its expected value given the predicted distribution of y;. If there
is no bias, then & = a. When the y; are Poisson random variables, checking this condition equates to
evaluating

E(@)=Ya" . (S14)
= 7

Note that the discrete nature of a Poisson distribution makes this a sum as opposed to an integral. Because
of the linearity of expectation E(a) = FE ( NP ) and there is no need to determine the average across
multiple values of y;. We therefore substitute our expressions for @ and A to obtain

0 NPT)Y ¢g—aNPT
B0 = 3 () IS
y=0 ’

—aNPT *° NPT
= y- (e PT) (S16)

NPT = y!

6—aNPT
= ~p7 aNPTe*NPT (S17)
- . (S18)

and hence there is no bias associated with the estimator a for the Holling Type I response in this case.
The derivation of the MLE for « of the ratio-dependent model is equivalent and evidences that & =
y/(NT), which is unbiased.
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Holling Type I1

alN
——_pT S1
A=F(N,P,T,0) = T ah N (519)
aNPT aNPT &
InL(0y) = — ; ;! 20
m ) = = T T hNZy (Hly ) 520
dInL(0ly) _ iy yi+ahN YL,y —anPTN _ (S21)
da a(l +ahN)? -
. (]
-9 S22
— YT N(PT - hy) (522
. NPT -%" y; aNPT—3j PT 1
dmEO) _ o, g onNPT 2y oNPT =y PT 1
dh aN Y " v aN7y i aN
We check for bias in a as above with
) = We A
B@) = Yat (524)
y=0
° Y )\ye_A
= . S25
S (vt =) o

This sum is not convergent. However, we note that Jensen’s inequality for convex functions of y dictates
that
y E(y)
E > . S26
(vot=m1) 2 mpr ) (520
By substituting in F(y) = A = F(N, P,T,0) we find that

alN
. A Farn DT
E@) > = , S27
W= NPT =) = NPT - hPT) (520

which means that the bias on a will always be positive.
We similarly check for bias in h with

. L \e A
B(h) = Zh/\ = (S28)
=0 ¥
= /PT 1 Ye=A
- (T 29
o\ Y aN y!

which is also a non-convergent sum. Jensen’s inequality is again useful because h is also a convex

function of y, thus
PT 1 PT 1
El———)>—— - —. S30
(y aN>_E(y) alN (530
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Substituting E(y) = A = F(N, P, T, 0) into this expression we find that

A PT 1 PT 1
Ehz S =N~ v pr an ™
a TantT a

which implies that the bias on h will always be positive.

The MLEs for the parameters of the Arditi-Ginzburg model are similar in form and bias:

Arditi-Ak¢akaya
alN
aNPT aNPT & -
InL(Oly) =— 1 i — 1 i!
nL(0ly) an+ahN+an+ahN;y H<Hy>
d InL(0|y) L0 4o P™y v _ yP™
da nNPT —hNY " yi N (PT — hy)
d InL(0|y) - nPT pm™ PT PT™
bl A P h—e -
dh — o i aN — 'y  aN
PT _
dmc@ly _,_ " (an (57 1))
dm In P

Note that aNyPT > aNh because £L Z T > p (that is, P—_T <

(S31)

(S32)

(S33)

(S34)

(S35)

(S36)

(S37)

(S38)

%) because the mean number of prey eaten

per predator per time of the experiment cannot exceed the maximum possible number of prey eaten per

predator in that time, 1/h. Therefore 1 is always a positive number.

As above, we can use the facts that & and h are convex functions of y to show that there is positive

bias in both. We check for bias in m with

e8] e,)\
E(m) = Y. o

|
y=0 v
B 00 In (aN) + In (% — h) )\ye—)\
= — .
o In P !

The expression for 7 is a convex function of y. Jensen’s inequality therefore dictates that

In (aN) + In (%—h) y In (aN) + In (%—h)

E InP InP
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Substituting E(y) = A = F(N, P, T, 0) into this expression we find that

E() > In(aN) +In (55 —n)

> ™z =m, (S42)

which implies that the bias on 1 will always be positive.

S7.2 Binomial

The binomial distribution has a single parameter, p, specifying the probability of a “successful” event.
The expected number of successful events in N Bernoulli trials is Np with variance Np(1 — p). We
express the likelihood function as being for n replicates of such a binomial process (i.e. n/N Bernoulli
trials). The expected total number of successes is therefore nNp with variance nNp(1 —p), and y; refers
to the number of successes in the ith replicate.

N
flylp) = < )py(l —p)NY Probability function
Y
(S43)
Lply)=[[rw) =11 ﬁp i(1—p)Nvi Likelihood function
; Yi
i=1 =1
(S44)
In L(ply) = Z In < > Z yi In(p (nN - Z yl> In(1—p) log-Likelihood
=1
(S45)

d InLiply) _ Z% (Nn -y m) -0 (S46)
i=1

dp

y
MLE
niN N

(S47)

The Binomial is used in the context of functional-response experiments where eaten prey are not
replaced. Given an initial level of NV prey available and a presumed functional response, F'(N, P,0),
the predicted £ number of prey consumed (i.e. “successful” events) is determined by integrating the

dynamical equation
N—k T
dN
—_— = dt (S48)

and solving for k£ (see also Rosenbaum & Rall, 2018). Note that we here abuse our own notation for
the functional response F' because the time period of the experiment is explicitly considered in the right

hand side of the equation (i.e. fOT dt = T'). For many functional responses, the analytical solution of

this integral leads to a transcendental equation for % of the form ke* = x. In these cases, the solution(s)
for k can be determined with the Lambert W function (Lehtonen, 2016), which we will write below as
Wo(x). Upon determining k, we can compute the likelihood given the functional-response parameters

using p = %, with y; referring to the number of eaten prey in the ith replicate.
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Holling Type I
For the Holling Type I, the integration of eqn. S48 does not lead to a transcendental equation, hence the
solution does not necessitate use of the Lambert W function.

b % C 1Pt (S49)
n N n
InL(0ly) = Zln <y) + Zyi In(1 — e T 4 Z:yZ YIn(e oFT) (S50)
i=1 v i=1
N
dInLBly) I (m)
e (55D
‘We check for bias on a with
A — - - (N Y1 —_ n\ Vv
E@) = Y a , )P a-p (S52)
y=0

o0 In <7N]X ) N
= >\ —5 ( >py(1 S AR (853)
Y
The expression for a is a convex function of y. Jensen’s inequality therefore dictates that

E - gi» > o (];;]T’VE(”) . (S54)

Substituting E(y) = k into this expression we find that

a =a
- PT ’

meaning that there is positive bias on & (unlike for experiments in which eaten prey are continually

replaced).

Holling Type I1
P [ahNearT-n)] (S56)
N ahN
N
dInL(Bly) _n (W)
T T TP >
N—y N—y
dln£(9|y)_0:>h:aPT+ln<N):PT_}_IH<N) (S58)
dh ay y ay

As above, we can use the fact that a is a convex function of y to show that there is positive bias on a.
The bias of / is a more nuanced, depending on the dominance of its first and second terms. h is a convex
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function of y, and hence biased positive, when § << NN, much like under a Poisson (i.e. replacement)
scenario. h is a concave function of y when ‘;—Z > 0, but this only occurs as g approaches N within
the domain where h remains positive. Hence, negative bias will only occur when significant depletion
occurs.

Arditi-Akgakaya
k pm ah __a_ —
p= k- [Pm Ne o (PT hN>] (559)
m N
d InL(6ly) _ P ()
Qo VT 0T Ty (560
m N—g m N—y
1  aPT+ P"In (2 pr P"hn(—F*
dWEO m(F) _per PmCR)
dh ay iy ay
an n (42)
dInL(0y B L In(5=)
Tam VTS T (562)

As above, we can use the fact that a is a convex function of y to show that there is positive bias on
a. Similarly, there is positive bias on 7 since it is a convex function of y. As for the Holling Type II

response, the bias of h is a more nuanced, but will be positive unless significant depletion occurs (i.e. §
approaches V).
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S7.3 Normal and log-Normal

The Normal (Gaussian) distribution has two parameters, with y specifying the expected number of events
and o their variance.

1 —(y—m)*
fylp, o) = 5 ¢ 23 Probability function (S63)
Yixea
Lp,oly) = f[f I Likelihood function (S64)
W, oy (yi) = 1kelihood function
=1 z =1 \/ﬁ
1 *Zizl(yi*#)
_ P A (S65)
(\/27702)
1
InL(p,oly) = —§nln (2m0?) - o= 22 log-Likelihood (S66)
1 > Z-:1 (yi) | 2u3 i i
- —§nln (2m0”) - z202 - 202 + 2012 (567)
dInL(u,o "
R T D DUSITED SR, (68
= /l:n;yz:y MLE (S69)
=

Given a presumed functional response, F'(N, P, T, ), and an experiment in which eaten prey are
continually replaced, we therefore have

In £(6]y) = —fnln (2m0?) — LQ Z F(N, P,T,0))% (S70)

Using the same derivation steps as for the Poisson, we can show that all MLEs assuming a Normal
distribution are the same as those derived under the Poisson. For brevity, we show this for only the
Arditi-Akgakaya functional response.
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Arditi-Ak¢akaya

alN
F(N,P,T,0) = ———PT ST
( ) 9 9 ) Pm + ahN ( )
1 1 & aNPT \?
1 = ——nlog (2r6?) — — i — S 72
n[,(e) 2n Og( uxes ) 202 gt <y pPm +ahN> (S )
d L) NTP™ ' (naNPT — Y1 yi (P™+ahN)) 0 (S73)
do o2 (P™ + ahN)? B
Pm
= 0=l o
N (5~ h)
dnL(B)  o*N?PT (naNPT — Y7, yi (P™ 4+ ahN))
_ . =0 (S75)
dh o2 (P™ + ahN)
. PT Pm
N S76
. E (S76)
d L) _ aNTP™ ' InP (naNPT — Y1, i (P" +ahN)) _ (S77)
dm o2 (Pm + ahN)?
In (ozN (% — h))
g (S78)
In P

These MLEs are the same as those derived when assuming a Poisson process and are thereby subject
to the same qualitative biases. (As discussed in Section S6, they may also suffer from addition bias
associated with the estimation of the “nuisance” parameter o.)

Under the assumption that the numbers of prey eaten are random variables drawn from a log-Normal
distribution, the likelihood is written as

n 1 —(ny;—p)?
L oly) =T ———e 27 . (S79)
(1, oly) ];[1 I

Functional response parameter MLEs derived assuming a log-Normal distribution are therefore equiv-
alent to those as derived under the Normal likelihood except that the observations y; are each log-
transformed. This causes the MLEs derived under the log-Normal likelihood to become functions of
the geometric mean number of prey eaten, rather than the arithmetic mean, thereby introducing addi-
tional bias due to an added layer of nonlinearity.
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