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Abstract

Functional responses are a cornerstone to our understanding of consumer–resource interactions,
so how to best describe them using models has been actively debated. Here we focus on the con-
sumer dependence of functional responses to evidence systematic bias in the statistical comparison
of functional-response models and the estimation of their parameters. Both forms of bias are uni-
versal to nonlinear models (irrespective of consumer dependence) and are rooted in a lack of suffi-
cient replication. Using a large compilation of published datasets, we show that – due to the
prevalence of low sample size studies – neither the overall frequency by which alternative models
achieve top rank nor the frequency distribution of parameter point estimates should be treated as
providing insight into the general form or central tendency of consumer interference. We call for
renewed clarity in the varied purposes that motivate the study of functional responses, purposes
that can compete with each other in dictating the design, analysis and interpretation of func-
tional-response experiments.

Keywords

Fisher information, information criteria, model comparison, model flexibility, mutual predator
effects, nonlinear species interactions, parameter estimation, predator dependence, prediction.

Ecology Letters (2021) 24: 580–593

INTRODUCTION

Functional responses describe how a consumer’s feeding rate
responds to its prey’s abundance as determined by behaviour
and the composition and conditions of their community and
abiotic environment (Solomon, 1949; Abrams and Ginzburg,
2000; Uiterwaal and DeLong, 2020). Applications of the
functional-response concept are found in pest control, inva-
sive species management and conservation biology, and are
fundamental to theory in population, community and evolu-
tionary ecology. Much effort has therefore been devoted to
experiments designed to measure and statistically compare
the many mathematical models that have been developed to
characterise consumer functional responses, with theory evi-
dencing often dramatic differences in the biological infer-
ences and predictions that alternative model forms and
parameter values provide (Fussmann and Blasius, 2005;
Arditi and Ginzburg, 2012; Aldebert and Stouffer, 2018;
Coblentz and DeLong, 2020).
A dominant focus of the literature on functional responses

has been the discussion of so-called prey-, ratio- and con-
sumer-dependent models (Abrams, 1994, 2015; Abrams and
Ginzburg, 2000; Arditi and Ginzburg, 2012; Barraquand, 2014;
Tyutyunov and Titova, 2020). These, respectively, describe
feeding rates as responding to prey abundance alone, to the
ratio of prey and consumer abundances, or to both prey and

consumer abundances more generally. Knowing which of these
models best characterise consumer feeding rates can be impor-
tant because, for example, predictions of population and food-
web dynamics are qualitatively altered by either the structural
replacement of the classically assumed prey-dependent Type II
model of Holling (1959) for the corresponding ratio-dependent
model of Arditi and Ginzburg (1989), or by a parametric
change in the strength of mutual consumer effects encapsulated
in the consumer-dependent models of Arditi and Akçakaya
(1990), Beddington (1975) and DeAngelis et al. (1975) and
Crowley and Martin (1989).
Although a tremendous amount remains to be learned

about consumer functional responses (e.g. Koen-Alonso,
2007; Baudrot et al., 2016; Novak et al., 2017; Uiterwaal and
DeLong, 2020), the long-standing debate regarding the rela-
tive merits of prey- versus ratio-dependent models in particu-
lar is now largely considered by many to be pragmatically
resolved: the most recent synthetic assessments of published
experiments conclude that most consumer feeding rates
respond to both prey and consumer densities, and that they
do so in a more general manner than described by exact ratio
dependence (Osenberg et al., 1999; Skalski and Gilliam, 2001;
DeLong and Vasseur, 2011). More specifically, interference
among consumers is considered common, variable in strength
and tending to magnitudes that are ‘intermediate’ to exact
prey- and ratio-dependence (Osenberg et al., 1999; DeLong
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and Vasseur, 2011; Arditi and Ginzburg, 2014). Neither prey-
nor ratio-dependence is therefore considered an adequate
descriptor of consumer feeding rates (but see Arditi and Ginz-
burg, 2012, 2014; Abrams, 2015; Tyutyunov and Titova,
2020).
Here we use the perceived resolution of the debate over the

consumer-dependent nature of functional responses to bring to
light more general issues inherent to the statistical merger of
theory and data obtained from functional-response experi-
ments. Our focus is on the use and interpretation of informa-
tion-theoretic model comparisons (Box 1) and model-specific
parameter estimates (Box 2), rather than mathematical analyses
of plausibility or the philosophical underpinnings of alternative
deterministic model formulations (c.f. Arditi and Ginzburg,
2012; Barraquand, 2014; Abrams, 2015). To assess the extent
and severity of these expected statistical issues, we followed
prior syntheses of consumer dependence by Hassell and Varley
(1969), Hassell (1971), Arditi and Akçakaya (1990), Skalski and
Gilliam (2001) and DeLong and Vasseur (2011) and compiled a
total of 77 functional-response datasets, incorporating many
studies not considered by or available to earlier compilations.
Because prior syntheses either used potentially suboptimal sta-
tistical methods or included published parameter estimates
from across studies using different statistical methods (see sum-
mary in Supplementary Materials S2), we re-analysed all data-
sets by fitting to them the suite of commonly considered
functional-response models and comparing those fits with a
now standard information-theoretic approach.

Our analyses reveal systematic bias regarding the inferred
density-dependent nature and strength of consumer interfer-
ence. Bias is driven by variation in experimental sample sizes:
studies with smaller sample sizes are biased towards inferences
of stronger interference and of particular functional-response
model forms. In highlighting the bias for functional-response
models of consumer interference, our analyses bring to light the
universal but unappreciated bias that small sample sizes intro-
duce to information-theoretic model comparisons and maxi-
mum-likelihood parameter estimates for nonlinear functional-
response models in general (Boxes 1 & 2). Since all models are
wrong (Box, 1976), our primary objective is not to reignite
debate regarding prey-, ratio- and consumer dependence
(though we acknowledge this may happen). Rather, we call for
clarity and deeper discussion of the varied purposes that moti-
vate the empirical study of consumer functional responses, pur-
poses that can compete with each other in dictating the analysis
and interpretation of functional-response experiments.

METHODS

Data compilation and functional-response models

We attempted to consider all published functional-response
datasets of predator and parasitoid consumers having varia-
tion in both prey (host) and consumer abundances, the major-
ity of which represented manipulative experiments (Table S1).
Potential datasets were identified in three ways:

Box 1. Bias in information-theoretic model comparisons

Information-theoretic model comparisons have become a mainstay in ecology, as well as in the context of judging the relative
performance of alternative functional-response models. The most frequently used information criterion is the Akaike informa-
tion criterion, AIC (Akaike, 1973, 1974). AIC estimates the expected relative Kullback–Leibler divergence of a focal model
(whose performance in fitting a set of data is being judged) from the ‘true’ model responsible for generating the data. Asymptot-
ically, it minimises out-of-sample prediction error. A model’s AIC reflects the balance between its ability to describe the data as
per its likelihood and its complexity as judged by its number of parameters k, thereby justifying comparisons of performance
for models that differ in complexity. By parsimony, models with smaller AIC are deemed to outperform models with larger
AIC.
However, AIC is only an approximately unbiased estimator of the Kullback–Leibler divergence when k is small relative to the

sample size n of the data, and will be negatively biased towards smaller values when n is small (Akaike, 1974; Burnham and
Anderson, 2002). Sugiura (1978) and Hurvich and Tsai (1989) introduced the corrected Akaike information criterion, AICc, to
correct for this bias by imposing a greater, sample size-dependent penalty on a model’s parametric complexity. Because AICc

converges on AIC as sample size increases, it is generally the preferred criterion to use. However, the standard equation for
AICc was derived in a context of linear regression models with Gaussian errors and remains a biased estimator for nonlinear
models and non-Gaussian models, especially when sample sizes are small (Burnham and Anderson, 2002). Even AICc may
therefore show model-selection bias in favour of more complex functional-response models when sample sizes are small.
Furthermore, a model’s complexity is not just a function of its number of parameters but also of its functional form. Two

models with an equal number of parameters can combine these in different ways, leading to differing degrees of flexibility
(Gutenkunst et al., 2007; Ly et al., 2017). This form of complexity (a.k.a. geometric complexity) may be considered problematic
in the context of assessing model performance because a model with greater flexibility will have larger estimation uncertainty
associated with each of its parameters’ point estimates that together ‘conspire to cancel each other out for the special purpose
of fitting the observed data’ (Myung, 2000). Criteria such as AIC and AICc that use only the maximum-likelihood point esti-
mates ignore this flexibility, the effect of which diminishes with increasing sample size for alternative criteria that do consider it
(Myung, 2000; Myung et al., 2006). Multiplicative models like the Arditi–Akçakaya model are generally expected to exhibit
greater flexibility than additive models like the Beddington–DeAngelis model (Fig. 1, see Supplementary Materials S3), hence
are expected to be preferentially selected by AIC and AICc when sample sizes are small.
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(1) by assessing the data sources of the above-referenced
prior syntheses;

(2) by assessing all publications citing the above-referenced
prior syntheses, as well as Abrams and Ginzburg (2000);
and

(3) by cross-referencing our compiled list of datasets with the
more extensive, primarily prey-only functional-response
data set compilations of Rall et al., (2012) and DeLong
and Uiterwaal (2018).

We stopped compiling datasets in July of 2018. When possi-
ble we obtained the original data from the authors. Otherwise,
we extracted data points, or means and associated uncertainty
estimates, from the publication, either from provided tables or
using GraphClick (2010). A few published studies were not
included in our analyses because, for example, prey experi-
enced significant mortality not attributable to predation (e.g.
Schenk et al., 2005; Stier et al., 2013; Stier and White, 2014)
or because observations were not all independent (e.g.

Cresswell, 1998; Blowes et al., 2017), which necessitated tai-
lored models beyond the scope of our analyses. Similarly, a
few studies in which prey abundances or the numbers of prey
eaten were quantified as non-integer values (i.e. densities or
feeding rates, e.g. Hebblewhite, 2013) were not included since
these necessitated alternative statistical models, though for
most such previously analysed studies these data could be
converted to counts (i.e. numbers of prey available and eaten
in a given amount of time, e.g. Vucetich et al. (2002)). Unlike
some prior syntheses (Arditi, pers. comm.; see also Abrams,
2015), we did not exclude datasets in which significant prey-
depletion occurred (but see Fig. S1). Datasets entailing con-
sumers feeding on multiple prey species were included and
treated as separate prey-specific datasets only when this was
done by the original authors (e.g. Chan et al., 2017).
We considered a total of eight commonly considered deter-

ministic functional-response models (Table 1): the prey-depen-
dent Holling Type I and Type II forms (Holling, 1959), the

Box 2. Bias in maximum-likelihood parameter estimates

The sample size-dependent bias of maximum-likelihood parameter estimates for nonlinear models differs from the model-com-
parison bias discussed in Box 1. We illustrate the general problem using a simple example co-opted from Box (1971), then show
its relevance to the estimation of functional-response parameters.
Box (1971) considered the issue of estimating the rate parameter θ for a model of exponential decay,

yi ¼ e�θti þ ɛi, (1)

where all i¼ 1,2, . . .,n observations of response variable yi are made at the same time (t∗ ¼ t1 ¼ t2 ¼ :::¼ tn) and the ɛi residuals
are assumed to be independent and described by a Gaussian distribution with a mean of zero and a variance of σ2. The value
of θ that maximises the likelihood of the data is

θ̂¼�ln �yð Þ
t∗

¼
ln 1

�y

� �

t∗
, (2)

where �y¼ 1
n∑

n
i¼1yi is the arithmetic mean of all observations. Since all observations were taken at the same time, �y will follow a

Gaussian distribution whose mean of exp �θt∗ð Þ will have a standard error of σ�y ¼ σ=
ffiffiffi
n

p
. Because the numerator of eqn 2 is a

concave-up function of �y, Jensen’s inequality dictates that θ̂ will be biased upward with respect to the true value of θ unless
σ�y ¼ 0. Estimation bias is therefore an intrinsic consequence of observation noise or variation in the assumed decay process, but
becomes smaller as sample size increases.
Equivalent variation-induced bias occurs for the parameter estimates of all nonlinear functional response models (see Supple-

mentary Materials S7 for details and derivations of qualitative bias in representative models). For example, for the Arditi–-
Akçakaya model on which most prior inference of consumer interference has focused, the maximum-likelihood estimator for
the interference strength m when eaten prey are replaced is

m̂¼
ln αN PT

�y �h
� �� �

lnP
, (3)

where �y is the arithmetic mean number of eaten prey and all other parameters are defined in Table 1. Because �y cannot exceed
the possible number of prey eaten, PT=h, the numerator of eqn 3 is positive and is also a concave-up function of �y. This makes
m̂ biased upward with respect to the true value of m unless there is no residual variation among experimental replicates or sam-
ple sizes are large, regardless of whether the numbers of prey eaten in the course of an experiment are assumed to be samples
from a Poisson or Gaussian distribution. The estimator for m is similarly biased when the proportions of prey eaten are
assumed to be drawn from a binomial distribution for non-replacement studies. In fact, for non-replacement studies, even the
estimator for the attack rate of linear functional response models is biased. Since maximum-likelihood estimators derived
assuming a Gaussian likelihood are equivalent to the estimators of least squares regression, bias will occur when applying the
latter as well. Furthermore, since maximum-likelihood estimators derived under a log-normal likelihood are a function of the
geometric mean y rather than the arithmetic mean, and the geometric mean will always be less than the arithmetic mean, esti-
mation bias for parameters like m will be compounded when using regression on log-transformed counts of prey eaten.
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corresponding ratio-dependent forms (Sutherland, 1983; Arditi
and Ginzburg, 1989) and the more general consumer-depen-
dent forms of Beddington (1975) and DeAngelis et al. (1975),
Crowley and Martin (1989), Hassell and Varley (1969) and
Arditi & Akc¸akaya (1990). Of the two Holling-like con-
sumer-dependent models, the Beddington–DeAngelis model

assumes interference occurs only when consumers are search-
ing for prey, whereas the Crowley–Martin model assumes it
occurs equally during both searching and handling. Of the
two ratio-like consumer-dependent models, the Hassell–Varley
model assumes that handling times are inconsequential and
the Arditi–Akçakaya model does not; both assume that inter-
ference among consumers occurs through a generic multiplica-
tive process. We did not consider any of the many additional
nor less-phenomenological functional-response models that
have been proposed (e.g. Jeschke et al., 2002; Abrams, 2010),
including parasitoid-specific models (e.g. Rogers, 1972).
Hence, for some parasitoid datasets and models, attack rate
estimates are better interpreted as reflecting encounter rates
(Arditi, 1983).

Model-fitting and performance

We fit all functional-response models to each dataset by first
obtaining maximum-likelihood parameter estimates using the
sbplx optimisation function of the nloptr R package (Johnson,
2020), then passing these to the mle2 function of the bbmle
package (Bolker, 2020) using the default optimiser to estimate
parameter uncertainty. For each dataset, we assumed one of
two statistical models: a Poisson likelihood for studies in
which eaten prey was continually replaced, and a binomial
likelihood for studies in which they were not. For non-re-
placement studies, we generated predictions for the number of
eaten prey using the Lambert W function (Lehtonen, 2016)
after confirming that numerical integration using odeintr:rk4
(Keitt, 2017) gave equivalent results. All parameters were con-
strained to be positive by exponentiation (Bolker, 2008). For
observational field studies, we followed the original author’s
assumed prey replacement scenario (Table S1). Parasitoids
were classified as either discriminatory or non-discriminatory,
with studies of non-discriminatory parasitoids being treated as
replacement studies (Table S1). Data available only in the
form of means and uncertainties were analysed by a paramet-
ric bootstrapping procedure in which 250 new datasets were
created assuming either a treatment-specific binomial or Pois-
son process as dictated by the study’s replacement of prey.
More specifically, for a treatment level of N prey having n
replicates and a mean μ and standard error s prey eaten, we
drew n random values x from a Gaussian distribution,
N μ,s

ffiffiffi
n

pð Þ, to parameterise a Poisson distribution (setting
x<0 to x¼ 0) or binomial distribution (setting x<0 to x¼ 0
and x>N to x¼N) to generate integer counts of prey eaten.
We considered the median of the resulting distribution of
parameter estimates as the point estimate. In one case where
no estimates of uncertainty were available (Katz, 1985), we
treated the available means as raw data, as done in prior syn-
theses.
We assessed the relative performance of the fitted models

for each dataset by ranking them in two ways: by their AICc

and by their mean absolute deviation (MAD). Despite its
assumptions (Box 1), AICc is typically the preferred informa-
tion criterion when sample sizes are small or vary across data-
sets; it converges on the most widely used information
criterion, AIC, as sample size increases. As with AIC, models
having AICc values within 2 units of the best-performing

Fl
ex
ib
ili
ty

H1 LR HV H2 AG BD CM AA
0

2

4

6

8

10

12

Model

Figure 1 Model complexity as assessed by the flexibility term of the Fisher

Information Approximation applied to each of the functional-response

models we considered (Table 1). We assumed an experimental design

entailing N∈ 2,4,8,16,32f g and P∈ 1,2,5f g treatment levels with prey

replacement, and that the numbers of prey eaten were samples from a

Poisson distribution constrained such that no more than an expected 32

prey were eaten in any treatment level in a single unit time period T.

Note that flexibility will differ for different experimental designs and may

only be compared among models having the same number of parameters;

an additional term in the Fisher Information Approximation penalises

models for their number of parameters (see Supplementary Materials S3).

Table 1 The eight deterministic functional-response models we considered

for describing the rate at which prey (hosts) are eaten (parasitised).

Name Abbreviation Model Parameters (k)

Holling Type I H1 aN 1

Holling Type II H2 aN
1þahN 2

Beddington–DeAngelis BD aN
1þahNþcP 3

Crowley–Martin CM aN
1þahNð Þ 1þcPð Þ 3

Linear Ratio-dependent LR αN
P 1

Arditi–Ginzburg AG αN
PþαhN 2

Hassell–Varley HV αN
Pm 2

Arditi–Akçakaya AA αN
PmþαhN 3

Variables N and P refer to the abundances of prey (hosts) and predators

(parasitoids). Parameters a and α respectively refer to the attack rates of

the Holling- and ratio-like models; their dimensions differ (Arditi and

Ginzburg, 2012). Parameters c and m respectively represent interference

strengths for Holling- and ratio-like models; we use separate symbols

because their dimensions also differ. Note that m is constrained to posi-

tive values in the formulations used here; much previous work uses equiv-

alent formulations in which m is negative or is made positive by explicit

negation. When fitting the BD and CM models, we replaced P with P�1

for datasets in which P reflected a count rather than density. The number

of parameters, k, refers to the number of free parameters in each model

because only these determine the mean and variance of the Poisson and

binomial statistical models we employed. For replacement studies to

which the Poisson was applied, the predicted count of prey eaten corre-

sponds to the functional response multiplied by P and the time period of

the experiment or observation window, T. For non-replacement studies to

which the binomial was applied, the predicted proportion of prey eaten

by P consumers after time period T was solved for analytically (see Sup-

plementary Material S7).
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model are considered to have equivalent support (Burnham
and Anderson, 2002). In theory, AIC is asymptotically opti-
mal in the sense of minimising a model’s out-of-sample mean
squared error (MSE). MAD is similar to MSE but describes
the within-sample differences between observations and pre-
dictions, and is more easily interpreted by not differentialy re-
scaling deviations of different magnitude the way that squar-
ing deviations does. For the additional purpose of judging
model performance in a relative goodness-of-fit sense, we also
evaluated each model’s MAD as a percentage of the MAD of
the best-performing model having the lowest MAD, arbitrarily
considering a 1% difference as reflecting a negligible differ-
ence in model performance. We then looked for systematic
variation across all datasets in their rankings of alternative
models by ordering datasets by their sample size. Sample size
was defined as the total number of experimental replicates
(within and across treatments) or observations (e.g. time
points) as defined by the original authors.

Parameter inference

Recent synthetic assessments of consumer dependence fall into
two categories: those that evaluated relative support for alter-
native model forms (as above, e.g. Skalski and Gilliam, 2001),
and those that investigated magnitudes of interference as esti-
mated using the consumer-dependent Arditi–Akçakaya model
(e.g. DeLong and Vasseur, 2011; Arditi and Ginzburg, 2012).
The Arditi–Akçakaya model combines the saturating form of
the Holling Type 2 and Arditi–Ginzburg models with the mul-
tiplicative interference effects of the Hassell–Varley model. Its
multiplicative nature makes the interference strength parame-
ter, m, dimensionless (unlike all other parameters of this and
all other considered models). This permits direct comparisons
across studies, with estimates of m¼ 0 evidencing perfect prey
dependence and estimates of m¼ 1 evidencing perfect ratio
dependence. Therefore, and although bias due to low sample
size may occur for the parameters of all nonlinear models
(Box 2, Supplementary Materials S7), we focused our assess-
ment of bias on m, plotting estimates as a function of each
study’s sample size and other covariates (i.e. predator or para-
sitoid, replacement or non-replacement, no depletion or deple-
tion, raw or bootstrapped data). To assess the specificity of
inferences to our chosen statistical approach, we also repeated
our estimation of m by employing the method used by Arditi
and Akçakaya (1990) for all datasets where this method could
be applied (see Supplementary Materials S5).
Past assessments of interference strengths have relied on

point estimates alone, just as is implicitly done when model
performance is assessed using information criteria such as
AICc (Box 1). However, assessing the uncertainty of parame-
ter estimates is equally important when drawing inferences
(Osenberg et al., 1999; Aldebert and Stouffer, 2018). We
approximated standard errors in one of three ways: For non-
bootstrapped datasets, we first attempted the confint profiling
method of bbmle (Bolker, 2020) assisted by the SEfromHes-
sian function of the HelpersMG package (Girondot, 2020). On
occasion, this failed because the optimisation converged but
the likelihood surface was nearly flat around the optimum. In
these cases, we resorted to the quadratic approximation of

mle2 (Bolker, 2020). For bootstrapped datasets, we used the
16th and 84th quantiles of the distribution of estimates, corre-
sponding to �1 standard deviation of a normal distribution
(Efron and Tibshirani, 1994).

RESULTS

Model performance

As judged by AICc, the Crowley–Martin, Arditi–Akçakaya
and Arditi–Ginzburg models were, respectively, each ranked
first by 23 (29.9%), 17 (22.1%) and 17 (22.1%) of the 77
datasets (Fig. 2a, Table 2). This was followed by the Bedding-
ton–DeAngelis model which ranked first for 11 (14.3%) data-
sets. No datasets ranked the linear ratio-dependent model as
first. The Beddington–DeAngelis and Arditi–Akçakaya models
were the most frequent models to be ranked second at a
respective 35 (45.5%) and 20 (26.0%) times. In total, 46
(59.7%) datasets had a single model outperform all others by
more than two AICc units. For the 23 datasets where the
Crowley–Martin model was ranked first, the Beddington–-
DeAngelis, Arditi–Akçakaya and Arditi–Ginzburg models
were each within two AICc units for one dataset. For the 17
datasets where the Arditi–Akçakaya model was ranked first,
at least one of three models – the Beddington–DeAngelis, the
Crowley–Martin and the Arditi–Ginzburg model – were
within two AICc units a total of 6 (35.3%) times.
Sample sizes varied greatly among the datasets and were

skewed towards smaller studies (range = 10–528, median =
80, mean = 115.1, Fig. 2). The smaller their sample size, the
greater was the proportion of datasets that ranked the
Arditi–Ginzburg, Hassell–Varley, or Holling Type II models
as first (Fig. 3a). Thus, for example, for the 39 datasets having
sample sizes equal to the median sample size or less, the
Arditi–Ginzburg model was ranked first 15 (38.5%) times,
whereas the Crowley–Martin, Arditi–Akçakaya and Bedding-
ton–DeAngelis models were ranked first a respective 12
(30.8%), 5 (12.8%) and 1 (2.6%) times, and were ranked sec-
ond a respective 3 (7.7%), 13 (33.3%) and 15 (38.5%) times.
Correspondingly, the more that datasets with larger sample
sizes were considered, the greater was the proportion that
ranked either the Crowley–Martin, Arditi–Akçakaya or Bed-
dington–DeAngelis models as first (Fig. 3a), and the Bedding-
ton–DeAngelis model as second (Fig. 3b). Datasets with
larger sample sizes were somewhat better able to discriminate
among models than were smaller datasets, with 19 (48.7%) of
the 39 smaller datasets and 27 (71.1%) of the 38 larger data-
sets having a single model outperform all others by more than
two AICc units (Fig. 2).
As judged by MAD, the Arditi–Akçakaya model ranked

first for 28 (36.4%) of all considered datasets (Fig. 2b,
Table 1). This was followed by the Crowley–Martin and Bed-
dington–DeAngelis models which, respectively, ranked first
for 24 (31.2%) and 18 (23.2%) datasets. The Beddington–-
DeAngelis and Arditi–Akçakaya models were the most fre-
quent models to be ranked second at a respective 34 (44.2%)
and 18 (23.4%) times. According to MAD, no datasets ranked
the linear ratio-dependent model as first and one ranked the
Arditi–Ginzburg model as first. Forty-six (59.7%) datasets

© 2020 John Wiley & Sons Ltd
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Models

(a) AICc (b) MAD

Model rank

Chan 2017 ch (10)
Chan 2017 cs (10)
Chan 2017 lh (10)
Chan 2017 ls (10)
Vahl 2005 k (10)
Vahl 2005 t (10)
Chant 1966 (15)
Katz 1985 (16)

Edwards 1961 ts2 (17)
vonWesternhagen 1976 2hr (20)
vonWesternhagen 1976 4hr (20)
vonWesternhagen 1976 8hr (20)

Reeve 1997 (26)
Krylov 1992 i (28)

Vucetich 2002 w98 (28)
Griffen 2007 fA1a (32)
Griffen 2007 fA1b (32)

Mansour 1991 (36)
Wasserman 2016 mb (37)
Wasserman 2016 bg (38)
Wasserman 2016 ti (39)

Huffaker 1982 (40)
Hossie 2016 cl (42)
Hossie 2016 ev (42)

Vucetich 2002 w14 (44)
Johnson 2006 (45)
Medoc 2013 (48)
Long 2012 (50)
Salt 1974 (50)

Crowley 1989 (60)
Pusack 2018 (60)
Walde 1984 (60)
Kratina 2009 (67)

Edwards 1961 ts1 (75)
Medoc 2015 be (76)
Medoc 2015 dv (76)
Medoc 2015 pu (76)

Vucetich 2002 m98 (77)
Prokopenko 2017 (80)
Kumar 1985 Cc (90)
Kumar 1985 Dl (90)
Kumar 1985 Sm (90)

Omkar 2004 (90)
Edwards 1961 nm (97)
Hassan 1976 Ag (100)
Hassan 1976 Br (100)
Hassan 1976 Pp (100)
Fussmann 2005 (101)
Griffen 2007 f1a (108)
Griffen 2007 f1b (108)
Eveleigh 1982 aa (111)
Eveleigh 1982 pa (111)

Vucetich 2002 m14 (118)
Kfir 1983 (120)

Mertz 1968 (120)
Jones 1988 e4 (125)
Chong 2006 (126)

Jones 1988 e5 (140)
Uttley 1980 i1 (168)

Mills 2004 (179)
Lang 2012 Po 20 (181)
Lang 2012 Pt 10 (184)
Lang 2012 Po 10 (185)
Lang 2012 Pt 20 (186)
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had at least one model producing a MAD within 1% of the
first-ranked model. Of the 28 datasets for which the Arditi–-
Akçakaya model was ranked first, the Beddington–DeAngelis,
Crowley–Martin and Holling Type II models produced MAD
values within 1% a respective 17 (60.7%), 8 (28.6%) and 8

(28.6%) times. The Arditi–Ginzburg, Hassell–Varley and lin-
ear ratio-dependent models did so a respective 7 (25.0%), 2
(7.1%) and 1 (3.6%) times. The MAD of more complex mod-
els was not always less than that of their corresponding sim-
pler models, in contrast to their likelihood (underlying AICc)
which must improve with complexity.
For MAD, the smaller their sample size, the greater was the

proportion of datasets that ranked the Arditi–Akçakay or
Hassell–Varley models as first (Fig. 3c), and the Arditi–-
Akçakay model as second (Fig. 3d). Correspondingly, the
more that datasets with larger sample sizes were considered,
the greater was the proportion of datasets that ranked either
the Crowley–Martin or Beddington–DeAngelis models as first,
and the Beddington–DeAngelis model as second. Datasets
with larger sample sizes were no better in their ability to dis-
criminate among models than were smaller datasets, with 16
(41.0%) of the 39 smaller datasets and 15 (39.5%) of the 38
larger datasets having a single model outperform all others by
the 1% criterion (Fig. 2b).

Parameter inference

Magnitudes of consumer interference as estimated assuming
the Arditi–Akçakaya model ranged from m ≈ 0 to 3.8 with an
overall mean of 0.94 (� 0.62 SD). However, studies with
smaller sample sizes generated larger interference estimates
(Fig. 4) such that, for example the mean estimate of studies
with a sample size exceeding the median sample size was 0.71
(� 0.44 SD) with a range of m ≈ 0 to 1.93. No other covariate

Table 2 The number of datasets for which each functional-response model

achieved a given rank relative to all other models as judged by AICc or

by MAD. Models having equivalent support to the top-ranked model are

indicated in Fig. 2.

Rank H1 H2 BD CM LR HV AG AA

AICc

1 2 2 10 23 0 5 17 18

2 0 1 35 12 1 1 8 19

3 0 2 18 16 2 4 8 27

4 1 13 9 20 0 1 22 11

5 3 28 2 3 4 24 12 1

6 9 4 3 3 18 37 2 1

7 34 19 0 0 12 5 7 0

8 28 8 0 0 40 0 1 0

MAD

1 1 3 18 26 0 3 1 25

2 0 3 34 13 0 2 7 18

3 0 4 18 12 0 1 17 25

4 1 11 4 19 3 3 28 8

5 4 28 1 4 5 22 13 0

6 12 8 2 3 12 35 4 1

7 31 17 0 0 11 11 7 0

8 28 3 0 0 46 0 0 0
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was similarly associated with the estimated strength of con-
sumer interference (Fig. S1). Although uncertainty around
point estimates also tended to increase the lower the sample
size, this increase occurred at a slower rate than did that of
the point estimate magnitudes; most large-magnitude esti-
mates associated with small sample sizes were therefore well
constrained. Use of the Arditi and Akçakaya (1990) method
of interference strength estimation for the subset of datasets
to which it could be applied did not alter our qualitative infer-
ence regarding the presence of bias among low sample size
studies (Figs S4–S5).

DISCUSSION

Past appeals for a data-driven resolution to the debate over
consumer dependence have been answered by a doubling of
the number of published datasets since the clarion call of
Abrams and Ginzburg (2000). Barring an exceptionally strong
publication bias (Osenberg et al., 1999; Abrams, 2015), our
analyses of the accumulated data substantiate the pragmatic
resolution of the debate’s primary focus: consumer depen-
dence is common, and neither exact prey- nor ratio-dependent
models reflect statistically parsimonious descriptors (as judged
by AICc and MAD) of the density dependence exhibited by
most consumer feeding rates. Our analyses also confirm prior
syntheses of prey-only experiments, showing that consumer
feeding rates are almost invariably a saturating function of
prey densities (Jeschke et al., 2004).
Our primary new insight, however, is the existence of strong

statistical bias in the ability of the available data to help char-
acterise and quantify consumer dependence. First, inadequate
sample sizes bias the standard information-theoretic compar-
ison of model performance towards the models of Hassell and
Varley (1969), Arditi and Ginzburg (1989), and, by extension,
their generalised combination by Arditi and Akçakaya (1990).
Our results on AICc, paired with those on mean absolute
deviation, are consistent with this bias being due to a combi-
nation of the (mis-)estimated parametric and geometric com-
plexity that these models entail (Box 1). This bias added to
the poor identifiability of m at small sample sizes which
caused AICc to (correctly) give less support to the Arditi and
Akçakaya (1990) model than the model of Arditi and Ginz-
burg (1989) for which m¼ 1. Second, the estimation of inter-
ference strengths by application of the long-established
method of maximum likelihood to the model of Arditi and
Akçakaya (1990) is biased by inadequate sample sizes towards
larger-than-true values of interference strength. Although the
magnitude of this estimation bias will depend on the details of
each dataset, its qualitative direction is to have been antici-
pated (Box 2).
Both forms of bias are not specific to any of the functional-

response models we considered, including the Arditi–-
Akçakaya model and its parameters. Indeed, both forms of
bias may occur for all nonlinear functional-response models –
and even for linear models when eaten prey are not replaced
(Box 2) – regardless of whether they are consumer dependent
or even only resource dependent. Unfortunately, their univer-
sality and prevalence have not been recognised in the func-
tional-response literature, nor in the larger literatures on the

characterisation and estimation of species interaction strengths
more generally (Wootton and Emmerson, 2005). Therefore, in
what follows, we first discuss the general nature of biases that
arise at low sample sizes, and the difficulty of accounting for
them. Then, focusing on the results of the largest of datasets,
we outline several inferences with which to guide the future
development of functional-response theory and experiments.
The issues we highlight emphasise the need for a more explicit
consideration of the varied purposes that motivate the empiri-
cal study of consumer feeding rates and their functional
forms.

Bias is general

Although the sample size-dependent bias of information crite-
ria, like AICc, and of maximum-likelihood parameter estima-
tors, were recognised for nonlinear models long ago (Box 1
and Box 2), existing methods seeking to adjust for bias have
not been adopted in the functional-response literature. The
likely reason for this is that – to our knowledge – simple, off-
the-shelf methods do not exist. Bias quantification remains an
active area of statistical research even for linear models (Kos-
midis, 2014), with the most general methods, such as boot-
strapping and cross-validation (Efron and Tibshirani, 1994;
Myung, 2000), requiring sample sizes greater than those used
in many functional-response experiments.
The root cause of the difficulty is that bias is dependent not

only upon sample size alone, but also on the combination of
a given model’s functional form and the variation inherent
within each given dataset. More specifically, both model-com-
parison bias (Box 1) and parameter-estimation bias (Box 2)
are a function of a focal model’s parametric and geometric
complexity, how well these are estimated, and for consumer
functional responses, how these interact with the feeding rate
variation within and among the treatment levels of an experi-
ment. Sources of variation will include experimental design
(e.g. how many and how large a range of species abundance
levels are employed; Sarnelle &Wilson (2008); Uszko et al.
(2020)), observer error in estimating species densities and the
number of eaten prey (Jost and Arditi, 2000), and the beha-
vioural variation that exists among consumer and prey indi-
viduals (Chesson, 1984; Abrams, 2010). Many such sources of
variation will be present even in the well-controlled laboratory
studies that dominate the literature, and could even be magni-
fied in such studies given the small numbers of individual ani-
mals that are typically involved at low-abundance treatment
levels (Coblentz, 2020; Novak et al., 2017).
Both forms of bias therefore pertain to functional-response

models in general, including those that do not consider con-
sumer dependence. For example although we focused our
assessment on the interference parameter m of the Arditi–-
Akçakaya model because it is dimensionless and thus more
easily compared across studies, exponents like it are expected
to be particularly sensitive to estimation bias because their
maximum-likelihood estimators involve logarithmic functions
of the data (see Box 2 and the Supplementary Materials S7).
Bias is similarly probable and strong among published esti-
mates of body mass scaling exponents and the Hill exponent
in the respective contexts of allometric scaling theory and the
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density-dependent per capita attack rates of Type-III func-
tional responses (e.g. Rall et al., 2012; Baudrot et al., 2016;
Hossie and Murray, 2016). Few datasets in our compilation
evidenced over-prediction at low prey densities by the models
we considered (which could indicate density-dependent attack
rates) and too few included information on consumer and
prey body masses, hence the extent of the issue in these con-
texts deserves further investigation.
Importantly, parameter estimation bias will inflict all other

nonlinear functional-response parameters as well. This will
occur directly via the bias inherent in their own maximum-

likelihood estimators (Box 2), and indirectly through their
functional relationships and data-dependent covariances with
the estimates of other biased parameters. For example, bias is
also expected for the attack rate parameter with which the
interference parameter is functionally intertwined in the
Arditi–Akçakaya model (see also Gutenkunst et al., 2007;
Uszko et al., 2020), or for any deterministic functional-re-
sponse parameter when the assumed likelihood model entails
‘nuisance’ parameters whose estimates are biased (e.g. the
standard deviation of the Gaussian likelihood; see Supplemen-
tary Materials S6). Even for the simple Holling Type II
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model, estimates of the attack rate and handling time parame-
ters can exhibit significant covariation (Papanikolaou et al.,
2016; Uszko et al., 2020). The effect of covariation on bias
will be especially large when feeding rate variation is large
and heteroskedastic, or when the range over which species
abundances are varied is insufficient to constrain estimates.
The lower the sample size, the more challenging such issues of
parameter identifiability become. This issue is similar to the
bias caused by presuming the absence of (co)variation among
parameters, as can occur when one or more parameters is
fixed to a specific value (Hossie and Murray, 2016).

Fitting models to data serves varied purposes

What can be said about consumer dependence from the data-
sets in our compilation that do have large sample sizes? We
draw three main conclusions that are applicable to the func-
tional-response literature more generally.
First, as judged by AICc, each of the three most complex

models that we considered had statistically clear support for
being the sole best-performing model for several datasets, all
other models having ΔAICc>2. Therefore, consumer depen-
dence is pervasive but there is no universally best functional
form with which to characterise it (Skalski and Gilliam,
2001). Second, the strength of consumer interference as judged
by fitting the Arditi–Akçakaya model varied from being very
weak to very strong across consumer species and even for dif-
ferent life stages of the same species (e.g. Elliott, 2005). Focus-
ing on the general tendency of m after establishing that
consumer dependence is prevalent is therefore asking the
wrong question, with future work more fruitfully considering
the potential predictors of variation in mutual predator effects
(DeLong, 2014; Novak et al., 2017). Together, these two con-
clusions indicate ample room for more complex models to
provide useful biological insight and to statistically outper-
form the models considered here (Evans et al., 2013; Abrams,
2015; Stouffer and Novak, 2020). Rigorous evidence of con-
sumers for which conspecific density dependence is entirely
absent would also be useful, with much work remaining to
justify the relevance of species-isolating laboratory experi-
ments to the functional responses exhibited by consumers in
nature (Novak et al., 2017; Preston et al., 2018).
These first two conclusions do not, however, imply that

more complex functional-response models will necessarily be
more useful than simpler models. Many have advocated for
simple models on the basis of their analytical tractability, ele-
gance and utility in management contexts (e.g. Odenbaugh,
2005; Adkison, 2009; Arditi and Ginzburg, 2012). However,
the third conclusion we draw from our analyses of large sam-
ple size datasets is that multiple models of varying complexity
perform near equally well when performance is judged by the
high but otherwise arbitrary standard of describing the data
with a MAD<1% of the top-performing model. Although our
assessment did not evaluate the goodness-of-fit of the models
in an absolute sense, for a number of datasets these ‘equally
well-describing’ models were not among the AICc-judged top-
performing models.
The ostensible contrast between our third and first two con-

clusions points to the varied purposes that motivate the fitting

of functional-response models to functional-response data.
Most functional-response studies have been justified by a gen-
eric desire to better describe and understand the functional
form of consumer feeding rates to better predict population
dynamics. Old and rejuvenated literatures on the varied and
overlapping meanings of description, understanding and pre-
diction in ecology showcase the many ways in which this
expressed desire is too simplistic (Levins, 1966; Odenbaugh,
2005; Doak et al., 2008; Shmueli, 2010; Evans et al., 2013;
Maris et al., 2018; Elliott-Graves, 2019; Pennekamp et al.,
2019). Although a synthesis of these terms for ecology is far
from complete, pertinent highlights of the literature include
evidence that simple, non-mechanistic population models can
often better forecast population dynamics than even the mod-
els with which the dynamics were simulated in the first place
(Perretti et al., 2013); that parameter estimates need not all be
well-constrained to make accurate predictions in complex sys-
tems (Gutenkunst et al., 2007); that consumers may often
experience a small enough range in prey population sizes that
their functional responses are effectively linear under field
conditions (Novak, 2010; Preston et al., 2018); and that func-
tional nonlinearities important to describing variation at some
spatial, temporal or biological scales need not be important –
or indeed logical – at other scales (Chesson, 2009; Morozov
and Petrovskii, 2013). Others have distinguished among vari-
ous types of prediction – including explanatory, out-of-sam-
ple, extrapolatory, transferable and forecasting forms (e.g.
Odenbaugh, 2005; Shmueli, 2010; Maris et al., 2018) – reveal-
ing how judgements of model performance in regards to pre-
dictive utility are by their nature dependent on choices of
prediction type. Alternative motivations and choices similarly
underlie vibrant discussions regarding the uses of alternative
information criteria in statistical model selection (Myung,
2000; Shmueli, 2010; Aho et al., 2014). Indeed, our choice to
present model comparisons using AICc was motivated only by
the fact that its antecedent, AIC, is the most commonly used
information criterion in ecology (Aho et al., 2014); our infer-
ences regarding model-comparison bias at small sample sizes
remain qualitatively unchanged when using AIC or BIC (Sup-
plementary Materials S4).
In fact, the varied purposes that motivate the fitting of func-

tional-response models to data are also relevant in regards to
whether the statistical bias of low sample size studies is to be
considered problematic or not. Efforts to avoid model-com-
parison bias through the use of complexity-penalising infor-
mation-theoretic criteria are typically driven by a desire to
avoid over-fit models whose within-sample deviations may be
low but whose out-of-sample prediction error is high relative
to that of less complex models (Myung, 2000). However,
parameterisations of a given model using biased estimators
can result in lower prediction error than when unbiased esti-
mators are used (Shmueli, 2010). This is because a model’s
prediction error reflects both its bias and the variation in the
data it cannot explain (i.e. a model’s accuracy and precision
respectively; Bolker, 2008), among which there can exist a
trade-off. For example, even an unbiased estimator can
grossly underestimate 99% of the data as long as it overesti-
mates the remaining data even more egregiously, outliers
notwithstanding. In this sense, the parameter estimation bias
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that is present among low sample size studies need not be
considered problematic if the sole motivation is to be descrip-
tive of a predator’s feeding behaviour in a within-sample
explanatory sense.

CONCLUSIONS

Many forms and sources of bias exist in the functional-re-
sponse literature. These include recently recognised sources
related to an experiment’s design and venue (Novak et al.,
2017; Li et al., 2018; Preston et al., 2018; Uiterwaal et al.,
2018; Uiterwaal and DeLong, 2018), as well as persistent
model-associated sources (Trexler et al., 1988; Pascual and
Kareiva, 1996; Marshal and Boutin, 1999; Jost and Arditi,
2000; Novak, 2010; Novak and Wootton, 2010; McCoy et al.,
2012; Morozov and Petrovskii, 2013; Barraquand, 2014; Hos-
sie and Murray, 2016; Rosenbaum and Rall, 2018; Damgaard,
2020). Our analyses add to this list of issues, exposing the per-
vasive effect that small sample sizes have had on inferences of
consumer dependence, but they are also not immune to them.
For example, we did not address issues related to failing to
include the ‘true’ model among the models we considered
(Burnham and Anderson, 2002; Aho et al., 2014). Hence, for
example, our estimates of m assuming the Arditi and Akça-
kaya (1990) model may have been further biased for datasets
where Type III-like density dependence was present (Hossie
and Murray, 2016).
We acknowledge that our analyses also do not address the

quantitative magnitude by which small sample sizes could bias
model comparisons and parameter estimates. Instead, we have
relied on qualitative inferences alone. This is because bias cor-
rection is nontrivial and because the sources and forms of
(co)variation among datasets and models are so varied that
no single empirical or simulated dataset is likely to be suffi-
ciently representative and hence universally useful. We note,
however, that even seemingly small amounts of bias could
correspond to sizeable biological consequences. All else being
equal, overestimating the true value of m by a multiplicative
factor of ɛ is equivalent to mis-counting the number of preda-
tors by a multiplicative factor of Pɛ�1. Hence, in the case of a
bias as small as 5% (ɛ¼ 1:05), the inferred interference
strength between 10 predator individuals would be nearly
equivalent to having had 11 individuals instead, 26 individuals
would be nearly equivalent to 31, 100 individuals would be
nearly equivalent to 126, and 150 individuals would be nearly
equivalent to 193. While such consequences of overestimating
m may thus seem like less of a problem for studies entailing
low numbers of predators (e.g. 1, 2 or 3 predators individuals,
as most studies do), these same studies also tend to be those
with the lowest sample sizes. As a result, they will also tend
to experience the greatest estimation bias and will tend to
affect the greatest mis-predictions when extrapolating to the
population-level effects of predation in nature.
For overcoming model-comparison and parameter-estima-

tion bias, there is but one simple solution: future studies must
increase their sample sizes. We therefore urge authors, review-
ers and editors to hold studies to a higher standard. That
said, we offer no rule of thumb for determining what sample
size is enough; as noted above, the sample size necessary to

effectively reduce bias will depend on the variance-generating
processes of the system in question and the experimental
designs and models with which these processes are studied.
Continued developments in the areas of symbolic regression
and optimal experimental design should have much insight to
offer in reducing the logistical burden that will be required
(Okuyama and Bolker, 2012; Martin et al., 2018; Zhang et al.,
2018; Moffat et al., 2020). This notwithstanding, the most
fundamental advance that is needed is a conceptual one
regarding a clarity of purpose. Using statistics to bridge func-
tional-response models with empirical data requires recognis-
ing that data, theory and models (both deterministic and
statistical) each represent necessarily incomplete and some-
times incompatibly mismatched characterisations of nature.
Hence, for some purposes, failure to fit data need not invali-
date a model’s utility, whereas for others a model’s superior
fit need not substantiate it. Clarity regarding the purpose of
functional-response studies will aid in determining the map
between biological objectives and methodological approach,
and is needed for the functional-response concept to reliably
serve as the foundation for work across population, commu-
nity and evolutionary ecology as it is often considered to be.
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