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Kelp forests (Order Laminariales) form key biogenic habitats in
coastal regions of temperate and Arctic seas worldwide, providing
ecosystem services valued in the range of billions of dollars
annually. Although local evidence suggests that kelp forests are
increasingly threatened by a variety of stressors, no comprehen-
sive global analysis of change in kelp abundances currently exists.
Here, we build and analyze a global database of kelp time series
spanning the past half-century to assess regional and global
trends in kelp abundances. We detected a high degree of geo-
graphic variation in trends, with regional variability in the di-
rection and magnitude of change far exceeding a small global
average decline (instantaneous rate of change = −0.018 y−1). Our
analysis identified declines in 38% of ecoregions for which there
are data (−0.015 to −0.18 y−1), increases in 27% of ecoregions
(0.015 to 0.11 y−1), and no detectable change in 35% of ecore-
gions. These spatially variable trajectories reflected regional dif-
ferences in the drivers of change, uncertainty in some regions
owing to poor spatial and temporal data coverage, and the dy-
namic nature of kelp populations. We conclude that although
global drivers could be affecting kelp forests at multiple scales,
local stressors and regional variation in the effects of these drivers
dominate kelp dynamics, in contrast to many other marine and
terrestrial foundation species.

kelp forest | Laminariales | global change | climate change |
coastal ecosystems

Assessing ecosystem change on a global scale has been in-
strumental in highlighting the magnitude of human impacts

on natural ecosystems. For example, awareness of global declines
in fish populations (1), coral reefs (2), and tropical rainforests (3)
has substantially increased public interest and subsequent polit-
ical motivation for environmental conservation. In some cases,
global assessments have highlighted complex patterns of change
(4, 5), which often reflect variable trajectories among regions (4).

Significance

Kelp forests support diverse and productive ecological
communities throughout temperate and arctic regions world-
wide, providing numerous ecosystem services to humans. Lit-
erature suggests that kelp forests are increasingly threatened
by a variety of human impacts, including climate change,
overfishing, and direct harvest. We provide the first globally
comprehensive analysis of kelp forest change over the past 50
y, identifying a high degree of variation in the magnitude and
direction of change across the geographic range of kelps. These
results suggest region-specific responses to global change,
with local drivers playing an important role in driving patterns
of kelp abundance. Increased monitoring aimed at un-
derstanding regional kelp forest dynamics is likely to prove
most effective for the adaptive management of these
important ecosystems.
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Data deposition: The global database of kelp abundance time series has been published
on the Kelp Ecosystem Ecology Network website (www.kelpecosystems.org/data/), and on
the Temperate Reef Base website (temperatereefbase.imas.utas.edu.au/portal/search?
uuid=ecbe5cc3-3fbf-4569-b5e8-07c2201fcb9c). All data processing, analysis, and visualiza-
tion R code have been made available via GitHub (https://github.com/kelpecosystems/
global_kelp_time_series).
1To whom correspondence should be addressed. Email: kkrumhan@sfu.ca.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1606102113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1606102113 PNAS | November 29, 2016 | vol. 113 | no. 48 | 13785–13790

EC
O
LO

G
Y

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1606102113&domain=pdf
http://www.kelpecosystems.org/data/
http://temperatereefbase.imas.utas.edu.au/portal/search?uuid=ecbe5cc3-3fbf-4569-b5e8-07c2201fcb9c
http://temperatereefbase.imas.utas.edu.au/portal/search?uuid=ecbe5cc3-3fbf-4569-b5e8-07c2201fcb9c
https://github.com/kelpecosystems/global_kelp_time_series
https://github.com/kelpecosystems/global_kelp_time_series
mailto:kkrumhan@sfu.ca
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1606102113/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1606102113/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1606102113


However, even where clear global declines have been detected,
trajectories of change are often not uniform in direction and
magnitude among regions (e.g., ref. 6). Examining patterns of
regional change can provide important insights into the mecha-
nisms underlying global change, and lead to more specific rec-
ommendations for local and regional management actions aimed
at reversing or lessening further ecosystem degradation (7). Such
regional insights are particularly useful, as local and regional
stressors may be more amenable to management and conserva-
tion actions than global stressors (8).
Global declines have been documented in a number of marine

habitat-forming or “foundation” species (sensu ref. 9), including
seagrasses, corals, and oysters (2, 6, 10). The loss of these species
often leads to a direct reduction in ecosystem services critical to
human well-being (11–13), and the local demise of taxa that
provide those services (14, 15). The brown algae known as kelps
(Order Laminariales) are globally important foundation species
that occupy 43% of the world’s marine ecoregions (defined in ref.
16) along coastlines of all continents except Antarctica. Kelps are
useful sentinels of change because they are highly responsive to
environmental conditions (17, 18), and are directly exposed to
many human activities that impact the coastal zone (e.g., har-
vesting, pollution, sedimentation, invasive species, fishing, recre-
ation) (19). Kelps are among the most prolific primary producers
on the planet, supporting productivity per unit area rivaling that of
intensively cultivated agricultural fields and tropical rainforests
(20, 21). Kelps enhance diversity and secondary productivity lo-
cally through the formation of biogenic habitat (22, 23), and over
broad spatial scales via detrital subsidies (24). Kelp forests support
numerous ecosystem services, including commercial fisheries,
nutrient cycling, and shoreline protection, valued in the range of
billions of dollars annually (19, 25, 26). Consequently, changes in
the global abundance of kelps would have far reaching impacts on
ecosystem health and services.
Historically, kelp forest ecosystems have demonstrated a high

degree of resilience (27, 28), but recent evidence suggests that
the capacity of kelp forests to recover from disturbance may be
eroding (29, 30). Kelp forest declines have now been docu-
mented in many regions in response to a variety of stressors (18,
31–35), but kelp abundances have been stable or increasing in
other areas (17, 36, 37). Here, we amass a global database of kelp
abundances to provide a comprehensive picture of kelp forest
change. Specifically, we assess the evidence for two possible
patterns: (i) coherent patterns of change across the global range
of kelps, with a global average trend that is large relative to re-
gional variability, or (ii) regional variability that is far larger than
any global trend. The former pattern would suggest that global
stressors are the main driver of kelp forest dynamics, whereas the
latter pattern indicates a dominant influence of regional drivers
or region-specific responses to global drivers of change. The
results of our analysis provide key insights into the trajectory of
one of the world’s most productive ecosystems.

Results
Our database contains data from 34 of the 99 global ecoregions
where kelps exist, covering a large portion of the temperate
range of kelps as well as a few Arctic areas (Fig. 1). Our analysis
revealed that trajectories of change in kelp abundances were
highly variable across regions (Figs. 2 and 3 and SI Appendix,
Figs. S1 and S2). Using all available data across the greatest time
span for each ecoregion, we estimated a high probability of
decline (≥95%) in kelp abundances for Central Chile (in-
stantaneous rate of change = −0.150, n = 7 sites from 2004 to
2013), the Aleutian Islands (−0.071, n = 147 sites from 1987 to
2010), the South Australian Gulfs (−0.059, n = 22 sites from
1968 to 2012), the North Sea (−0.024, n = 33 sites from 1975 to
2013), North-Central California (−0.019, n = 116 sites from 1973
to 2012), and the Bassian ecoregion (−0.015, n = 121 sites from
1992 to 2012) (Figs. 2 and 3 and SI Appendix, Figs. S1 and S2).
High-magnitude declines were also inferred for the Agulhas Bank

(−0.177, n = 4 sites from 1992 to 1995) and Humboldt (−0.073,
n = 3 sites from 1996 to 2007) ecoregions, but there is greater
uncertainty in these trends. There was also evidence for a small
overall decline in the Gulf of Maine (93% probability, −0.028, n = 25
sites from 1978 to 2014) and the Scotian Shelf (83% probability,
−0.020, n = 31 sites from 1952 to 2014) ecoregions, but, again,
these trends were associated with higher uncertainty (Figs. 2 and 3
and SI Appendix, Figs. S1 and S2). When data were partitioned by
decade, our analysis identified a high probability of decline in kelps
from 2003 to 2012 in the South Australian Gulfs (−0.092) and the
Bassian ecoregion (−0.015); from 1993 to 2002 in the Aleutian
Islands (−0.098), Cape Howe (−0.080), Gulf of Maine (−0.036),
and Bassian (−0.022) ecoregions; and from 1983 to 1992 in the
Manning–Hawkesbury ecoregion (−0.280) (Fig. 2).
We identified three ecoregions where there was a high prob-

ability of increases in kelp abundance over the time periods for
which we have data (Figs. 2 and 3 and SI Appendix, Figs. S1 and
S2): the South European Atlantic Shelf (instantaneous rate of
change = 0.114, n = 8 sites from 2004 to 2013), the Southern
California Bight (0.018, n = 178 sites from 1980 to 2014), and
Namaqua (0.104, n = 9 sites from 1995 to 2006). Relatively high-
magnitude increases were also inferred for the Gulf of St.
Lawrence (0.072, n = 4 sites from 2000 to 2002), North Ameri-
can Pacific Fjordland (0.043, n = 9 sites from 1976 to 2013),
Beaufort Sea (0.027, n = 4 sites from 2003 to 2007), and
Northeastern New Zealand (0.026, n = 13 sites from 1999 to 2011)
ecoregions, but there was greater uncertainty in these trends (Figs.
2 and 3 and SI Appendix, Figs. S1 and S2). When data were par-
titioned by decade, high-probability increases were inferred from

1950 1960 1970 1980 1990 2000 2010

Year

34. NE New Zealand (13)
33. Manning Hawkesbury (7)
32. Cape Howe (63)
31. Bassian (121)
30. Western Bassian (4)
29. South Australian Gulfs (22)
28. Leeuwin (3)
27. Houtman (29)
26. Agulhas Bank (4)
25. Namaqua (9)
24. Chiloense (1)
23. Araucanian (2)
22. Central Chile (7)
21. Humboldtian (3)
20. Sea of Japan/East Sea (1)
19. Northeastern Honshu (2)
18. South European Atlantic Shelf (8)
17. Celtic Seas (245)
16. North Sea (33)
15. Southern Norway (11)
14. East Greenland Shelf (1)
13. Northern Grand Banks 
12. Gulf of St. Lawrence (4)
11. Scotian Shelf (31)
10. Gulf of Maine (25)
9. Virginian (1)
8. Southern California Bight (177)
7. Northern and Central California (116)
6. Puget Trough/Georgia Basin (2)
5. Oregon, Washington, Vancouver Is. (26)
4. North American Pacific Fjordland (9)
3. Gulf of Alaska (5)
2. Aleutian Islands (147)
1. Beaufort Sea (4)
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Fig. 1. (A) Number of sites in the dataset (n = 1,454) by ecoregion (16). Gray
shading indicates ecoregions where kelps are present but for which no data
were available. (B) Range of dates within each study within each ecoregion,
with line shading indicating the weight of studies within that range.
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2003 to 2012 in the Gulf of Alaska (0.085) and Southern California
Bight (0.018) (Fig. 2). Large uncertainty in the posterior rate esti-
mates of the remaining ecoregions precluded conclusions regarding
the direction of trends (Figs. 2 and 3 and SI Appendix, Figs. S1 and
S2). As a result, 35% of ecoregions were inferred not to exhibit
strong evidence of a directional change.
Our analysis detected a global average decline (i.e., the mean

of site-level slopes is negative, instantaneous rate of change =
−0.018 y−1, n = 1,138 sites from 1952 to 2015) (Fig. 4) that was
an order of magnitude smaller than the largest proportional rate
of change observed regionally (−0.177 y−1 in Agulhas Bank).
Although the majority of the dataset was composed of relatively
short-duration studies (71% were <20 y in duration) (SI Ap-
pendix, Fig. S3), the negative global trend detected by our
analysis was most strongly influenced by declines detected in
datasets that were collected over time periods longer than 20 y
(SI Appendix, Fig. S4) in 10 ecoregions (Scotian Shelf, South
Australian Gulfs, North Sea, Gulf of Maine, North-Central
California, Celtic Seas, North Sea, Southern California Bight,

Aleutian Islands, and Southern Norway). Slope estimates asso-
ciated with time series shorter than 20 y had higher variability,
and more commonly showed no directional change (SI Appendix,
Fig. S4). The global average trend was also most strongly influ-
enced by ecoregions with the most data (i.e., the Aleutian
Islands, North-Central California, Southern California Bight,
Bassian, Cape Howe, Celtic Seas), and therefore may not be
representative of large portions of the range of kelp where data
were missing entirely (i.e., Eastern Canadian Arctic and West
Greenland Shelf, the Russian Arctic, Cold Temperate Northwest
Pacific, Southern Chile and the Patagonian Shelf, Sahara Up-
welling, Eastern Bering Sea, Southern New Zealand, Great
Australian Bight) (Fig. 1), or where data were sparse through
time and across space (Figs. 1 and 2). Furthermore, although the
earliest data were collected in 1952, the bulk of available data
were collected from the 1990s to the present (Fig. 1 and SI
Appendix, Fig. S3), with the temporal distribution of available
data differing by ecoregion (Fig. 1).

Discussion
Global declines of a focal species group can indicate that the
cumulative effects of single or multiple stressors are over-
whelming the resilience of species throughout their range. The
potential for this decline is considered more likely for species
with slow postdisturbance recovery rates [e.g., corals (38)], those
species that display little seasonal variability in abundance [e.g.,
mangroves (39)], or those species experiencing stressors of suf-
ficiently widespread and high magnitude [e.g., fishes (1)]. How-
ever, for many taxa, globally coherent signals of change are
unlikely when the identity and magnitude of drivers vary widely
on local and regional scales (4, 17, 40), where species and eco-
types within taxonomic groups respond variably to change, or
where abiotic and biotic contexts vary widely across geographic
locations (41). The global average decline detected by our
analysis was modest compared with the large interregional
variability in the trajectories of change exhibited by kelps across
their range. Many ecoregions did not exhibit evidence of di-
rectional change, and for those ecoregions that did, both de-
clines and increases were evident at rates much larger than the
global average. These findings suggest region-specific signals of
global change, with local factors playing a dominant role in
driving kelp forest dynamics.
Many kelp forest ecosystems are naturally highly variable on

both seasonal and interannual time scales, and over small spatial
scales (42–44), reflecting a high reactivity to environmental
drivers and variation in their capacity to resist (45) and recover
from both small- and large-scale disturbances (46, 47). This wide
temporal variation contrasts with other marine foundation spe-
cies such as seagrasses (48, 49) and corals (50), which tend to
hold space for many years and take decades to recover from
disturbance. For kelp, rapid recovery following catastrophic
population losses is enabled by frequent recruitment and fast
individual growth rates; indeed, kelps have some of the fastest
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Fig. 2. Modeled ecoregion slopes (instantaneous rate of change per year)
and 90% credible intervals for the full dataset (n = 8,846 data points from
26 ecoregions), with variable temporal coverage in each ecoregion, and
by decade (1983–1992, 1993–2002, and 2003–2012). Ecoregion means are
colored red if the 90% credible intervals (i.e., high probability) do not
overlap zero.
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growth rates of any primary producer on the planet (20, 21). The
high degree of natural variability among kelp systems may also
explain why detecting directional trends in kelp abundances is
difficult in some regions of the globe; available time series tend
to be short and variable compared with any long-term change
that kelp forests may exhibit (51).
The regional variability in change detected by our analysis is

also a reflection of the diversity of multiscaled stressors whose
effects vary in direction and magnitude across the geographic
range of kelp forests (52–54). In some cases, the results of our
analysis are consistent with predictions regarding regional trends
in temperature, with decreases in abundance in locations where
water temperatures are warming (e.g., Bassian ecoregion, Gulf
of Maine, Scotian Shelf) (32, 33) and increases where water
temperatures are cooling (e.g., Western South Africa, Southern
California Bight) (52, 55). In many instances, literature suggests
that climate-driven temperature change is acting synergistically
with other stressors, such as the fishing of sea urchin predators
[Bassian ecoregion (7)], pollution [South Australian Gulfs (56)],
and invasive species [Scotian Shelf (32)] to cause the kelp de-
clines detected by our analysis. However, our analyses identified
trajectories of change in some regions that were the opposite of
the trajectories of change predicted by climate alone (e.g., de-
creases in central and Northern Chile, the Aleutian Islands),
suggesting the overwhelming influences of other drivers. For
example, kelp harvesting accounted for recent kelp declines in
Central and Northern Chile despite a regional cooling trend (57).
In other instances, regional increases in kelp (e.g., west coast of
Vancouver Island, Southern California Bight) can be attributed
to successful local management efforts, including the recovery of
previously exploited sea urchin predators (58) and reductions in
local pollution levels (59). Regional variation in the trajectories
of kelp change was also influenced by the underlying frequency
of sea urchin-driven phase shifts that characterize many kelp
forest ecosystems (28, 30). For example, long-term declines in
the Aleutians were associated with persistent shifts toward sea
urchin barrens since the 1990s (60). Such long-term change in

kelp abundances may be obscured in systems that experience
more frequent phase shifts, such as the Scotian Shelf (47) and
Northern, Central, and Southern California (61–63). In some
regions, identified trajectories were opposite to those trajectories
documented in local studies (e.g., South European Atlantic
Shelf, Western Australia) (64, 65). These discrepancies are likely
a result of the short time series available for these regions, the
greater ability of focused regional studies to pick up certain types
of change (e.g., range changes, shifts in species composition),
and/or the occurrence of discrete events that disrupt stability or
gradual change (18).
We have compiled and analyzed the most comprehensive

database of subtidal kelp abundance time series to date. How-
ever, there remains a high degree of uncertainty in the trajectory
of change across the global range of kelps, with few to no data
in many regions where kelp exists. Even in ecoregions where
kelps have been sampled, datasets contain few sites and are
characterized by inconsistent sampling over time. In particular,
there is a noticeable lack of historical “baseline” data by which to
benchmark change, with the majority of our data having been
collected within the past 30 y. This data limitation is especially
true for Arctic regions, where climate change impacts are an-
ticipated to be highest (52). The decrease in the number of sites
in our dataset in the past 5 y is also a potential cause for concern,
although this decrease may partially reflect the exclusion of
recently initiated monitoring programs that did not meet our
criteria for inclusion (≥2 y in duration). Nonetheless, the reality
is that the majority of subtidal research programs are short in
duration due, in large part, to variable and unpredictable
funding. Consequently, in some regions, there has been a clear
shift in emphasis away from long-term monitoring for this key
group of foundation species (25). Detecting future changes in
kelp ecosystems at regional and global scales is best achieved
by methodologically consistent, long-term monitoring efforts
broadly distributed throughout all ecoregions (51). The use of
aerial and satellite data to monitor changes in kelp canopies
can help fill gaps in effort (17, 42), but these technologies are
useful only for kelps that have surface canopies, whose current
geographic distribution represents only about half of the total
global extent of kelps.
Overall, our results show a high degree of variability within

and among regions in the direction and magnitude of kelp forest
change over the past half-century, with declines noted in just over
a third of ecoregions included our analysis. This result is strikingly
different from that reported for many other marine and terrestrial
systems that are experiencing consistent declines in species abun-
dance across the globe (1–3, 6) and, in many ways, highlights the
atypical resilience of kelps. However, where kelp resilience is
eroding and leading to declines in abundance (7, 18, 54, 64, 66, 67),
impacts to ecosystem health and services can be far-reaching (19,
25, 26, 68, 69). Maintaining the resilience of kelp forest ecosystems
into the future will rely on the continued monitoring of kelps and
management of stressors on local and regional scales.

Materials and Methods
We compiled time series of diver-sampled kelp abundances from published
and contributed datasets (SI Appendix, Tables S1 and S2). We also collected
published datasets from a Web of Science search conducted in July–August
2013 and repeated in May 2014. The search terms we used were: kelp and
loss, abundance, change, recovery, stability, decline, gain, time series, den-
sity, biomass, percent cover, and disturbance. We also used the terms in-
crease and decrease in association with abundance, biomass, and density.
This search returned a total of 4,490 results. We included studies if they had
at least three measurements of diver-sampled abundance (quadrat, transect,
or plot-scale) of a kelp species (Order Laminariales) that spanned more than
2 y. This literature search resulted in the inclusion of datasets from 48 pub-
lished studies (SI Appendix, Table S1). We also requested datasets from the
Kelp Ecosystem Ecology Network listserv (www.kelpecosystems.org) and
from additional scientists identified by network members, and included
these datasets if they met our criteria. Relevant measures of abundance
were biomass density, individual density, stipe density, or percent cover.
We note that these measures of abundance may not capture some range

Fig. 4. Global distribution of modeled site level slopes (instantaneous rate
of change per year) and 90% credible intervals (n = 8,846 data points from
26 ecoregions). The vertical black line shows the global mean slope, with the
shaded band indicating the 90% credible interval, which does not overlap
zero (i.e., >95% probability of decline).
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contractions or losses of kelp bed area, depending on the local and re-
gional sampling regime. However, they were chosen because they repre-
sent the longest time series available for the widest range of kelp species.
Data using the SACFOR scale (S, superabundant; A, abundant; C, common;
F, frequent; O, occasional; R, rare) from Europe were translated to corre-
sponding abundances (70). Only data from subtidal kelps (>3-m depth)
were included. Juvenile kelps (independently defined by data collectors)
were excluded due to variable reporting of their abundances across
datasets. The datasets included and their associated citations are listed in
SI Appendix, Tables S1 and S2. Species included in each ecoregion are listed
in SI Appendix, Table S1.

We compiled datasets into a single database representing time series of
kelp abundance at a particular site (as defined by each author or data
contributor). In some datasets, this series represented changes at the level of a
population (single species), but, more commonly, this series represented a
summed assemblage of multiple kelp species, the composition of which was
made to remain consistent throughout the duration of each time series. We
note that aggregating across species precludes us from detecting changes in
kelp species composition within regions. We averaged abundance values at
the site scale across all depths and replicate samples taken during a given
sampling event, keeping the number of replicates consistent across sampling
dates. For most trajectories, we averaged across sampling events that oc-
curredwithin 45 d of one another to generate a single value, and treated that
average as having occurred on the mean date of the combined sampling
events. We aggregated samples from some datasets over time intervals other
than 45 d to accommodate sampling regimes specific to particular studies (4 d,
Southern Chile; 20 d, Nova Scotia and Northern Ireland; 31 d, Northern Chile;
and 65 d Southern California).

We selected only one metric for analysis in instances where studies in-
cluded multiple metrics of abundance (i.e., biomass density, individual
density, stipe density, percent cover). For each trajectory, we analyzed the
metric with the greatest number of sampling events. In the case of multiple
metrics having the same number of samples, we selected the metric using
the following hierarchy: biomass density (per square meter), stipe
density (per square meter), individual density (per square meter), and
percent cover.

We used Bayesian hierarchical linear models to estimate proportional rates
of change in the dataset as a whole (1949–2015) and split by decade (1983–
1992, 1993–2002, and 2003–2012). We note that similar results were achieved
using a likelihood-based mixed-effects model framework. We discuss trends at
the global and ecoregion levels only, because the analytical method used is
not well suited to describing trends at sites where data are sparse. We grou-
ped sites by ecoregion according to Spalding et al. (16). In each model, we
simultaneously estimated a unique rate for each time series and for each
chosen geographic region (with ecoregion or global subdivisions). We achieved
this estimation by considering the rate for each unique time series as a random
(normal) deviation from the mean rate within that geographic region. To ac-
count for study-level differences in uncertainty, we allowed for a unique error
variance within each study within each geographic region.

The model describing the abundance of kelps at the ith site within the jth
study within the kth geographic grouping (ecoregion or globe) at time t was

μk,j,i,t = β0k + β0k,i +
�
β1k + γ1k,i

�
xk,j,i,t , [1]

yk,j,i,t ∼ lognormal
�
μk,j,i,t , σj

�
, [2]

where xk,j,i,t is the time in years, β0k and β1k are the geographic group level
intercept and slope (on the log-scale), γ0k,i and γ1k,i are the site level devia-
tions from β0k and β1k (respectively), σj is the error variance associated with
each study, and yk,j,i,t is the kelp value standardized to the mean of the maxi-
mum three values in the specific ecoregion-focal unit combination as follows:

yk,j,i,t = kelpk,j,i,t
�
ecoregion-focal  unit max+ 0.01. [3]

We used a hierarchical framework to account for site-level deviations from
the geographic group-level mean parameters. This method is essential to
account for among-site variability in trends while also estimating overall
geographic group level mean trends (71). Thus, the site level deviations γ0k,i
and γ1k,i were assumed to follow a multivariate normal (MVN) distribution:

�
γ0k,i   γ1k,i

�T ∼MVNð0,ΣÞ. [4]

For numerical stability and efficiency, instead of estimating Σ directly, we
used the Cholesky decomposition (L) of the correlation matrix (Ω) and the
SD in intercept and slope among sites σγ = [σγ0 σγ1]

T with a Lewandowski–
Dorota–Joe (LKJ) prior in L (github.com/stan-dev/stan/releases/download/
v2.7.0/stan-reference-2.7.0.pdf), where

Σ=diagonal
�
σγ
�
Ω. [5]

Ω= L× LT. [6]

Priors and hyperpriors were as follows:

γ0k,i , γ1k,i , β0k , β1k ∼uniform½-∞,∞�. [7]

σj ∼half-Cauchyð0, νMÞ. [8]

νM ∼uniform½0,   3�. [9]

νM ∼half-Cauchyð0,2.5Þ. [10]

Lk ∼ LKJCholeskyðν= 2.0Þ. [11]

Because error variance may differ depending on the type of measurement
(biomass density, individual density, stipe density, or percent cover) we
allowed for different half-Cauchy hyperpriors (νM) on the study level error
variance for each of the four measurement types.

We sampled posteriors within a Bayesian hierarchical framework via the no-
U-turn-sampler variant of Hamilton Monte Carlo (72) in Stan via rstan (73, 74)
using R (75). Sampling included three chains each of 3,000 iterations and a
1,500-iteration burn-in period (sufficient to produce posterior convergence).

From the numerically generated posterior samples, we calculated the mean
and two-tailed quantiles, or 90% symmetrical credible intervals (i.e., Bayesian
analog to a confidence interval) for each parameter. We highlight those rate
estimates for which the 90% posterior credible interval did not overlap zero as
having a high probability of decline or increase. That is, if the upper bound of
the 90% credible interval lies on zero, this value equates to a 95% probability
of decline. We express the magnitude of change as the mean estimated slope
(instantaneous rate of change per year), considering kelps to be declining
where instantaneous rates are less than −0.015 y−1 and increasing where rates
are greater than 0.015 y−1 (representing rates of change equivalent to a
halving or doubling in abundance over a 50-y period).
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Table S1: Data sources for each ecoregion, including literature references for mined data 
sources and the names of contributed data sets. Contributed data sets are described in 
more detail in Table S2. Also included are the species represented by each data set in 
each ecoregion.   

Ecoregion Data source  Species 
Agulhas Bank Contributed: South Africa Gansbaii Ecklonia maxima 
Aleutian Islands Contributed: Estes NPRB Agarum clathrus, Pleurophycus gardneri, 

Nereocystis luetkeana, Laminaria yezoensis, 
Laminaria longipes, Eualaria fistulosa, 
Cymathaere triplicata, Agarum clathratum 

Bassian Contributed: Kelp Cover Australia Victoria, 
Kelp Cover Temperate Australia 

Undaria pinnatifida, Macrocystis pyrifera, 
Lessonia corrugata, Ecklonia radiata 

Beaufort Sea Contributed: Konar Beaufort Sea Laminaria solidungula, Saccharina latissima, 
Alaria esculenta 

Cape Howe Contributed: Kelp Cover Australia Victoria, 
Kelp Cover Temperate Australia 

Ecklonia radiata 

Celtic Seas Mined: 1, 2 
Contributed: The Brittany Rebent Monitoring, 

Northern Ireland Summary 

Undaria pinnatifida, Saccharina latissima, 
Laminaria ochroleuca, Laminaria hyperborea, 
Laminaria digitata, Alaria esculenta 

Central Chile Contributed: Northern Chile Fondecyt Macrocystis pyrifera, Lessonia trabeculata 
Chiloense Contributed: Southern Chile Macrocystis pyrifera 
Gulf of Alaska Mined: 3 

Contributed: Konar Gulf of Alaska 
Saccharina latissima, Pleurophycus gardneri, 
Nereocystis luetkeana, Laminaria yezoensis, 
Laminaria longipes, Laminaria bongardiana, 
Eualaria fistulosa, Cymathaere triplicata, 
Costaria costata, Alaria marginata, Agarum 
clathratum 

Gulf of Maine Mined: 4 
Contributed: Steneck Gulf of Maine, Witman 

Gulf of Maine, Normandeau Associates 

Saccharina latissima, Laminaria digitata, Alaria 
esculenta, Agarum clathratum 

Gulf of St. 
Lawrence  

Mined: 5, 6 Saccharina latissima, Alaria esculenta, 
Agarum clathratum 

Houtman Mined: 7,8,9 
Contributed: Kelp Cover Temperate Australia, 

Australia Western Australia Wernberg 

Ecklonia radiata 

Humboldtian Mined: 10 
Contributed: Northern Chile Fondecyt 

Macrocystis pyrifera, Lessonia trabeculata 

Leeuwin Contributed: Australia Western Australia 
Wernberg 

Ecklonia radiata 

Manning-
Hawkesbury 

Mined: 11,12,13 Ecklonia radiata 

Namaqua Mined: 14,15 Laminaria pallida, Ecklonia maxima 
North American 
Pacific Fjordland 

Mined: 16, 17 
Contributed: Haida Gwaii 

Saccharina latissima, Saccharina 
groenlandica, Pterygophora californica, 
Pleurophycus gardneri, Nereocystis luetkeana, 
Macrocystis pyrifera, Laminaria yezoensis, 
Laminaria setchellii, Laminaria longipes, 
Saccharina groenlandica, Eualaria fistulosa, 
Egregia menziesii, Cymathaere triplicata, 
Costaria costata, Alaria marginata, Agarum 
clathrus, Agarum clathratum 

North Sea Contributed: Norway Inner Coast (monitoring), 
Norway Inner Cast (assessment), Norway 
Monitoring 

Saccharina latissima, Laminaria hyperborea, 
Laminaria digitata 

Northeastern New 
Zealand 

Contributed: New Zealand Hakurai Gulf, 
Northern New Zealand 

Lessonia variegata, Ecklonia radiata 

Northern and 
Central California 

Mined: 18,19, 20 
Contributed: Edwards Baja, San Nicholas 

Island, Channel Islands National Park, 
PISCO Subtidal 

Undaria pinnatifida, Pterygophora californica, 
Pleurophycus gardneri, Nereocystis luetkeana, 
Macrocystis pyrifera, Laminaria setchellii, 
Saccharina latissima, Laminaria farlowii, 
Ecklonia arborea, Egregia menziesii, 
Dictyoneurum californicum, Costaria costata, 
Alaria marginata, Agarum fimbriatum 

Oregon, 
Washington, 
Vancouver Is. 

Mined: 21, 22, 23, 24, 25 
Contributed: PISCO Oregon, Vancouver Island 
 

Undaria pinnatifida, Saccharina latissima, 
Pterygophora californica, Pleurophycus 
gardneri, Nereocystis luetkeana, Macrocystis 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

pyrifera, Lessoniopsis littoralis, Laminaria 
setchellii, Laminaria farlowii, Ecklonia arborea, 
Egregia menziesii, Costaria costata, Alaria 
marginata, Agarum fimbriatum, Saccharina 
groenlandica 

Scotian Shelf Mined: 26, 27, 28, 29, 30, 31, 32, 33,34, 35, 
36, 37, 38, 39, 40 

Saccharina latissima, Laminaria digitata, 
Agarum clathratum 

South Australian 
Gulfs 

Contributed: Kelp Cover Temperate Australia, 
Australia Connell Canopy Loss 

Ecklonia radiata 

South European 
Atlantic Shelf 

Contributed: The Brittany Rebent Monitoring Undaria pinnatifida, Saccharina latissima, 
Laminaria ochroleuca, Laminaria hyperborea 

Southern 
California Bight 

Contributed: Edwards Baja, San Nicholas 
Island, Channel Islands National Park, 
PISCO Subtidal, Santa Barbara Coastal 
Long Term Ecological Research, Isla 
Natividad 

Undaria pinnatifida, Pterygophora californica, 
Pleurophycus gardneri, Nereocystis luetkeana, 
Macrocystis pyrifera, Laminaria setchellii, 
Saccharina latissima, Laminaria farlowii, 
Ecklonia arborea, Egregia menziesii, 
Dictyoneurum californicum, Costaria costata, 
Alaria marginata, Agarum fimbriatum 

Southern Norway Contributed: Norway Inner Coast (monitoring), 
Norway Inner Coast (assessment), 
Norway Monitoring 

Saccharina latissima, Laminaria hyperborea, 
Laminaria digitata 

Western Bassian Contributed: Kelp Cover Temperate Australia,  Ecklonia radiata, Macrocystis pyrifera 



 
 
Table S2. Contributed data set information, including the corresponding ecoregion, and 
the years covered, number of sites, contact person, and associated publications.  
	
Data Set Name Ecoregion Years  # Sites Contact Associated 

Publications 
Vancouver Island Oregon, Washington 

Vancouver Coast and Shelf 
1987-2011 8 Jane Watson 44 

San Nicolas Island Northern California and 
Southern California Bight 

1980-2011 7 Mike Kenner 45 

Witman Gulf of 
Maine 

Gulf of Maine 1979-2014 4 Jon Witman 46, 47 

Konar Beaufort 
Sea 

Beaufort Sea 2003-2007 4 Brenda Konar  

Channel Islands 
National Park 

Northern California and 
Southern California Bight 

1986-2011 16 David Kushner 48 

South Africa 
Gansbaai  

Agulhas Bank 1992-1994 2 Rob Anderson  

Central Chile 
Fondecyt # 
11110351 & 
1151094 

Central Chile 2013-2013 5 Alejandro Perez Matus 49 

PISCO Subtidal Central California and 
Southern California Bight 

1999-2012 146 Jenn Caselle 
Mark Carr 

 

Santa Barbara 
Coastal Long 
Term Ecological 
Research 

Southern California Bight 2001-2014 8 Dan Reed 51 

Kelp Cover 
Temperate 
Australia 

Bassian, Cape Howe, 
Houtman, South Australian 
Gulfs, Western Bassian 

1992-2012 187 Graham Edgar 
Neville Barrett 

52, 53, 54 

Estes NPRB Aleutian Islands 1987-2010 147 Mike Kenner, Jim 
Estes 

 

Isla Natividad, 
Baja California, 
Mexico 

Southern California Bight 2006-2014 5 Fiorenza Micheli, Jorge 
Torre (Comunidad y 
Biodiversidad, 
Asociacion Civil) 

55, 56 

New Zealand 
Hauraki Gulf 

Northeastern New Zealand 2007-2011 1 Nick Shears 57 

Northern New 
Zealand 

Northeastern New Zealand 1999-2011 12 Nick Shears 58, 59 

The Brittany 
Rebent Monitoring 
 
The European 
Water Framework 
Directive 
Monitoring 

Celtic Seas, South 
European Atlantic Shelf 

2004-2013 25 Sandrine Derrien-
Courtel 

60, 61, 62 

Australia Western 
Australia 
Wernberg 

Houtman and Leeuwin 2006-2011 6 Thomas Wernberg 63 

PISCO Oregon Oregon, Washington 
Vancouver Coast and Shelf 

2001-2004 8 Mark Carr  

Norway 
Monitoring 

North Sea and Southern 
Norway 

1990-2013 31 Kjell Magnus 
Norderhaug 

64, 65 

Northern Chile 
Fondecyt # 
1040425 

Central Chile and 
Humboldtian 

2004-2007 4 Alejandro Perez Matus 66 

Northern Ireland 
Summary 

Celtic Seas 1982-2012 226 Julia Nunn and Claire 
Goodwin 

 

Haida Gwaii North American Pacific 
Fjordland 

2010-2013 8 Anne Salomon  

Southern Chile Chiloense 2012 1 Alejandro Buschmann 67 



Edwards Baja Northern California and 
Southern California Bight 

1997-2006 62 Matt Edwards  

Kelp Cover 
Australia Victoria 

Bassian and Cape Howe 1998-2011 45 Scott Ling 68 

Australia Connell 
Canopy Loss 

South Australian Gulfs 1968-2008 2 Sean Connell 69 

Steneck Gulf of 
Maine 

Gulf of Maine 1996-2003 16 Bob Steneck  

Konar Gulf of 
Alaska 

Gulf of Alaska 2003-2012 4 Brenda Konar  

Norway Inner 
Coast (monitoring)  

North Sea/Southern Norway 1976-2012 1 Kjell Magnus 
Norderhaug 

70 

Norway Inner 
Coast 
(assessment)  

North Sea and Southern 
Norway 

1975-2006 9  
Frithjof E Moy 

71,	72	

Normandeau 
Associates 

Gulf of Maine 1978-2011 4 Paul Geoghegan Error! 
Reference 
source not 
found. 

	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 

Figure S1. Black circles show site level estimates of mean slope with bars denoting 90% 
credible intervals (data from 1-72). Sites are grouped by ecoregion and realm, with solid 
black vertical lines showing ecoregion level mean slopes and shaded bars indicating 90% 
credible intervals. Dashed lines denote 0. Bars are colored red where there is a high 
probability (>95%) that the slope does not overlap with zero.  
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Figure S1 continued 
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Figure S1 continued 
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Figure S2. Raw data by ecoregion with site and ecoregion level modeled slopes (data 
from 1-72). Data and slope estimates are colored and symboled by study (i.e., literature 
reference or contributed data set), while black lines show the ecoregion mean slope. Solid 
lines are used where site and ecoregion level slopes have a high probability (>95%) of 
being different from zero, and dashed lines are used where slopes do not meet this 
criterion. Shaded bands show the 90% credible interval around the mean rate of change 
(the black line). 
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Figure S2 continued 
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Figure	S2	continued	
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Figure S2 continued 
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Figure	S2	continued	

mean slope: −0.028±0.020

0.01

0.1

0.5

1

1980 1990 2000 2010

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
Lambert_etal_1992
Normandeau

steneck_gom
witman_gom

Gulf of Maine/Bay of Fundy

mean slope: 0.072±0.057

0.1

0.5

1

2000.5 2001.0 2001.5 2002.0 2002.5

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
Gagnon_atal_2005 Gagnon_etal_2004

Gulf of St. Lawrence − Eastern Scotian Shelf



Figure	S2	continued	
	

mean slope: 0.014±0.017

0.01

0.1

0.5

1

1980 1990 2000 2010

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
Aus_Marmion
Australia_WA_Wernberg

KelpCover_Temperate_Australia

Houtman

mean slope: −0.073±0.067

0.1

0.5

1

1997.5 2000.0 2002.5 2005.0 2007.5

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
Northern_Chile Vasquez_etal_2006

Humboldtian



Figure	S2	continued	

mean slope: −0.005±0.046

0.01

0.1

0.5

1

1985 1990 1995 2000 2005

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
Andrew_1991
Andrew_Jones_1990

Ettinger_etal_2008

Manning−Hawkesbury

mean slope: 0.009±0.038

1

2007 2008 2009 2010 2011 2012

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
Australia_WA_Wernberg

Leeuwin



	
Figure	S2	continued	

mean slope: 0.105±0.035

0.5

1

1995 1998 2001 2004 2007

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
Anderson_etal_ 2006
Pulfrich_etal_2003
South_Africa_Kwaaibaii

South_Africa_Mauritzbaai
South_Africa_Pump_House

Namaqua

mean slope: 0.043±0.059

0.01

0.1

0.5

1

1975 1985 1995 2005 2015

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
Estes_Duggins_AK Haida_Gwaii

North American Pacific Fijordland



Figure	S2	continued	

mean slope: 0.026±0.028

0.01

0.1

0.5

2000 2004 2008 2012

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
New_Zealand_Hauraki_Gulf Northern_New_Zealand

Northeastern New Zealand

mean slope: −0.020±0.008

0.01

0.1

0.5

1

1980 1990 2000 2010

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
Channel_Islands_National_Park
Edwards_baja
Gerard_ 1976

PISCO_subtidal
Schiel_etal_2004
SNI

Northern California



Figure	S2	continued	

mean slope: −0.024±0.011

0.01

0.1

0.5

1

1980 1990 2000 2010

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
norway_inner_coast_norderhaug−Ei
norway_inner_coast_norderhaug−Gr
norway_inner_coast_norderhaug−No

Norway_monitoring_kelp_data
norway_moy_christie_with_Åsen_2

North Sea

mean slope: 0.000±0.019

0.01

0.1

0.5

1

1990 1995 2000 2005 2010

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
Fox_etal_1999
Kvitek_etal_ 2001
PISCO_oregon

Shaffer_2000
VancouverIsland−JaneWatson

Oregon, Washington, Vancouver Coast and Shelf



	
Figure	S2	continued	

mean slope: −0.019±0.020

0.01

0.1

0.5

1

1960 1980 2000

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
Nova_Scotia Smith_ 1985

Scotian Shelf

mean slope: −0.059±0.027

0.01

0.1

0.5

1

1970 1980 1990 2000 2010

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
autralia_connell_canopyLoss KelpCover_Temperate_Australia

South Australian Gulfs



	
Figure	S2	continued	
	

mean slope: 0.018±0.008

0.01

0.1

0.5

1

1990 2000 2010

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
Channel_Islands_National_Park
Dayton_etal_1992
Dayton_etal_1999_Laminaria
Dayton_etal_1999_Pterygophora

Edwards_baja
isla_natividad
PISCO_subtidal
sbc_lter_longterm_community

Southern California Bight

mean slope: −0.009±0.018

0.01

0.1

0.5

1

1980 1990 2000 2010

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
Leinaas_Christie_1996
Norway_monitoring_kelp_data

norway_moy_christie_with_Åsen_2

Southern Norway



Figure	S2	continued	
	
	
	
	

mean slope: 0.114±0.055

0.01

0.1

0.5

1

2004 2006 2008 2010 2012

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
REBENT_Brittany_NW_France

South European Atlantic Shelf

mean slope: −0.006±0.094

0.1

0.5

1

2006 2008 2010 2012

St
an

da
rd

ize
d 

Ke
lp

 A
bu

nd
an

ce
+0

.0
1

Study
KelpCover_Temperate_Australia

Western Bassian



	

	
Figure S3. The number of sites in the global data set by year (data from 1-72).  
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Figure S4. A) Site level slopes and associated standard error, plotted against study 
duration and colored according to sign (positive, negative, or no change) (data from 1-
72). B) Distribution of site level slope estimates colored by sign (positive, negative, or no 
change).  
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