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Abstract We consider the goal of predicting how complex networks respond to
chronic (press) perturbations when characterizations of their network topology and
interaction strengths are associated with uncertainty. Our primary result is the deriva-
tion of exact formulas for the expected number and probability of qualitatively
incorrect predictions about a system’s responses under uncertainties drawn form arbi-
trary distributions of error. Additional indices provide new tools for identifying which
links in a network are most qualitatively and quantitatively sensitive to error, and for
determining the volume of errors within which predictions will remain qualitatively
determinate (i.e. sign insensitive). Together with recent advances in the empirical char-
acterization of uncertainty in networks, these tools bridge a way towards probabilistic
predictions of network dynamics.
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1 Introduction

The need to understand and predict how complex networks respond to perturbations of
their constituent entities pervades many disciplines, including applications in commu-
nications, human health, and fisheriesmanagement (Strogatz 2001; Ives andCarpenter
2007). Many of these perturbations involve sustained, chronic changes imposed on
particular nodes of the network (a.k.a. ‘press perturbations’ Bender et al. 1984), which
can propagate rapidly via both direct and indirect pathways. Ecosystem-based fish-
eries management, for example, entails the need to consider not only how alternative
harvesting scenarios will alter the abundance of a particular focal species or stock,
but also how such perturbations ripple through the ecosystem to affect non-targeted
species (Travis et al. 2014).

Predicting how networks respond to press perturbations is hindered by a number of
compounding sources of uncertainty (Petchey et al. 2015). It has long been appreci-
ated, for example, that predictions can depend crucially on knowing both the network
topology and the strengths of the interactions that connect each pair of species (Lawlor
1979; Yodzis 1988). Even low-complexity networks entail an inordinate number of
indirect pathways (Borrett and Patten 2003). When combined with uncertainty in a
network’s topology and interaction strengths, these indirect pathways can quickly
render a targeted perturbation’s net effects as indeterminate, leaving little predictive
certainty in the magnitude or even the sign (increase or decrease) of each species’
ultimate response (Dambacher et al. 2002; Novak et al. 2011).

Here, our goal is to understand the effect of uncertainty on the steady state variation
of a complex network presumed to be well-described by a system of ordinary differen-
tial equations. The variation of interest is either the quantitative or qualitative response
of each system variable to a sustained perturbation of another system variable. More
specifically, given a system of interacting variables defined by dNi

dt = fi ( �N ) + ui for

i = 1, . . . , n variables, we are interested in determining the sign or magnitude of ∂Ni
∂u j

.

In the context of ecological networks, Ni is the abundance of species i , fi ( �N ) is a
function describing the interactions between species i and a vector of other species,
and ui is a scalar representing a constant rate of external input to (or removal of)
species i . The relationship between (the sign of) ∂Ni

∂u j
and the vector valued function

�f encapsulates the (sign) sensitivity of a system’s predicted dynamics to uncertainty
in the species interactions. Qualitative indeterminacy refers to the situation when the
direction of a species’ response cannot be predicted without quantitative knowledge
of �f .

Previous efforts to understand the sign sensitivity of ecological networks such as
food webs have fallen into two primary categories. Both are based on the character-
ization of species interactions by means of the so-called Community matrix (Levins

1968), with Ai, j = ∂ fi ( �N )
∂N j

reflecting a Jacobian of the system’s i = 1, . . . , n popula-
tion growth rate equations (Novak et al. 2016). Assuming asymptotically stable steady
state conditions, the community matrix (when evaluated at or near the equilibrium)
affords insight into a press perturbation u j ’s net propagation along all direct and indi-
rect pathways by means of −A−1 = ∂Ni

∂u j
(Yodzis 1988). Each (i, j) entry of −A−1
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encapsulates a first-order approximation to the net change in species i’s steady state
abundance due to a sustained increase in species j’s population growth rate, assuming
no bifurcations are incurred (Novak et al. 2016). The elements of −A−1 are related
to how species are expected to respond to perturbations of their abundances (Lawlor
1979), per capita growth rates (Barabás et al. 2014), and carrying capacities (Levins
1968) by a scaling relationship between diagonal and off-diagonal matrix elements
(Novak et al. 2016).

Tractable algebraic insight into ∂Ni
∂u j

(e.g., Dambacher et al. 2002; Cortez and
Abrams 2016) is limited to small networks. Hence, beginning with Levins (1974),
the first approach, typically referred to as ‘loop analysis’ or ‘qualitative modeling’,
has been to focus on the influence of network topology alone by specifying the ele-
ments of A by their sign (i.e. Ai, j = 1, 0, or − 1). On this basis, it was reasoned in
Dambacher et al. (2002, 2003) that the relative frequency of positive and negative
feedback loops between species provides insight into the likelihood of observing a net
increase or decrease for a given species in response to a press perturbation elsewhere in
its network. That is, net effects emanating from a near equal summation of positive and
negative feedback loops are inferred to bemore qualitatively indeterminate than are net
effects that are dominated by one or the other. The approach is widely used (Carey et al.
2014; Marzloff et al. 2016), with benefits including the ability to more easily analyze
alternative network topologies, and that empirical estimates of interaction strength
are unnecessary. Drawbacks include the need to compute the matrix permanent of A
for the total summation of feedback loops, which quickly becomes computationally
challenging for large networks (Jerrum et al. 2004; Novak et al. 2011). Furthermore,
simulations have shown that the ‘weighted feedback matrix’, which encapsulate the
metric of positive versus negative feedback loops, quickly loses utility as its entries
rapidly diminish to values of zero, implying complete indeterminacy, as network com-
plexity increases (Novak et al. 2011). Extensions of the approach help to reduce this
indeterminacy in applications where prior information or knowledge of a subset of net
effects is available (Hosack et al. 2008; Raymond et al. 2011).

Beginning with Yodzis (1988), the second approach has been to assume that net-
work topology and some aspect of the quantitative elements of A are known, and to use
simulations to assess the sign sensitivity of −A−1 to uncertainty in A. For example,
Dambacher et al. (2003), Melbourne-Thomas et al. (2012), Raymond et al. (2011)
used simulations in which the values of A were drawn from predefined (typically uni-
form) distributions, interpreting the most frequently observed sign of each entry in the
resultant−A−1 matrices as the most probable perturbation response. Others have used
simulations to compare the sign structure of−A−1 given an assumed ‘true’ A to those
produced after introducing varying degrees of error to the elements of A, randomly
drawing these errors from log-uniform distributions (Novak et al. 2011; Iles andNovak
2016). The benefits of such ‘quantitative models’ include consideration of the extreme
variation of the Ai, j magnitudes that is known to occur in nature (Wootton and Emmer-
son 2005), and that this approach typically exhibits less qualitative indeterminacy on
average, given the assumed ranges of uncertainty, than do corresponding ‘qualitative
models’ (Dambacher et al. 2002; Novak et al. 2011). However, the approach provides
less clarity into the contribution of topology and requires extensive simulations or
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permutation tests to achieve insight. Recently, Giordano et al. (2016) have developed
an algorithm for determining which entries of A are sign insensitive (qualitatively
determinate) to quantitative uncertainty on the assumption that a BDC decomposition
of A is possible.

Here we provide exact formulas for the expected number and probability of making
qualitatively incorrect predictions about a system’s responses given by−A−1 when the
entries of A are associated with error drawn from arbitrary distributions. Assessments
of alternative network topologies, as considered by loop analysis, may be considered
as special cases of these error distributions. Our approach does not rest on simulations
or algorithms for determining indeterminacy. Focusing on two particularly illustrative
network motifs—a four-species trophic chain (TC) and a four-species intraguild pre-
dation (IGP) motif (Fig. 1)—which are pervasive in food webs (Stouffer et al. 2007),
we provide computationally accessible methods for determining which entries of A
are most sensitive to error, and for determining the magnitude and volume of entry-
wise errors that will incur no sign switches for any distribution of errors. That is,
we focus on identifying the entries of A that need to be estimated most accurately in
order to avoid a sign switch somewhere in −A−1, rather than identifying the location
of entries that switch sign, which is also possible with our approach but not pursued
here. The methods we develop enable us to demonstrate and explain the seemingly
counterintuitive result that, for the parameterizations owing to Takimoto et al. (2007),
Novak et al. (2016), the TC motif is in fact more quantitatively sensitive than is the
IGP motif, despite the TC motif being entirely sign insensitive to any error in its Ai, j

entries. We relate this result to the variance of the entries of −A−1 as well as to the
singular values and the variance of the entries of A, which reflect a system’s asymptotic
stability (Allesina and Tang 2012). Note that, for consistency with the mathematical
literature, we henceforth use the term perturbation to refer to an error of magnitude ε

in the entries of A (i.e. Ai, j + εi, j ).
The results we obtain are organized as follows: Sect. 3 is dedicated to inves-

tigating the case when a single entry of A is perturbed. We begin in Sect. 3.1
by applying the well-known Sherman–Morrison formula for the inverse of a rank
1 perturbation of a matrix. This allows us obtain an inequality that determines
when the sign of the (i, j) entry of the inverse of the perturbed matrix differs
from the sign of the (i, j) entry of the inverse of the unperturbed matrix. Using
this, we calculate explicitly the probability of a sign switch in the (i, j) entry
of the inverse when the perturbation is taken according to some arbitrary distri-
bution. In Sect. 3.2, we then study the limiting behavior of the total number of
sign switches in the inverse of the perturbed matrix as the perturbation grows to
infinity and explicitly quantify how large the perturbation must be to reach this lim-
iting number of sign switches. We also numerically determine the expected fraction
of sign switches using independent Gaussian matrices and compare this with the
two motivating motif examples. In Sect. 3.3, we investigate how perturbing a sin-
gle entry of a given matrix affects the norm of the inverse, relative to the norm
of the inverse of the unperturbed matrix. We use the entry-wise (vectorized) 1-
norm and the (spectral) 2-norm to investigate these characterizations of quantitative
sensitivity.

123



Exact probabilities for the indeterminacy of complex. . . 881

2

3

4

1
A

1,1

A
2,2

A
4,4

A
3,3

A
1,2

A
2,1

A
2,4

A
4,2

A
2,3

A
3,2

A
3,4

A
4,3

(b)

2

3

4

1
A

1,1

A
2,2

A
4,4

A
3,3

A
1,2

A
2,1

A
2,3

A
3,2

A
3,4

A
4,3

(a)

Fig. 1 a The four-species trophic chain (TC) network motif and b the intraguild predation (IGP) network
motif depicted as signed digraphs. Arrowheads and circles respectively indicate the positive and negative
direct effects between species as encapsulated by A. Following Novak et al. (2016), we let A1,1 = −0.237,
A2,2 = A3,3 = A4,4 = −0.015, A1,2 = A2,3 = A3,4 = −1 and A2,1 = A3,2 = A4,3 = 0.1 for both
motifs, and A2,4 = −1 and A4,2 = 0.045 for the IGP motif. All other entries are set to zero

In Sect. 3.4, we investigate the case of perturbing multiple entries of A. Utilizing
an iterative application of the Sherman–Morrison formula, we show how to obtain a
system of inequalities that describes when sign switches will occur in the inverse of
the perturbed matrix. Looking at the region of “perturbation space” where no sign
switch occurs gives an indication of the “sign sensitivity” of the matrix, and we define
two indices reflecting this quantity.

In Sect. 4, we derive conditions on a tridiagonal matrix that ensure that the sign
pattern of the inverse of the matrix depends only on the sign pattern of the original
matrix. This defines a class of matrices in which arbitrary perturbations (as long as
they don’t change the sign pattern of the original matrix) will not cause the inverse
of the perturbed matrix to have a different sign pattern than that of the inverse of the
unperturbed matrix. The trophic chain (TC) motif provides an illustrative special case.

Finally, in Sect. 5, we provide an indication of why the IGP motif exhibits a high
proclivity for switching signs under any set of perturbations, as is demonstrated in
Sect. 3.4. We accomplish this by illustrating a way to decompose this matrix into
a sum of terms that can be individually analyzed using the techniques developed in
Sects. 3 and 4.

Throughout this paper, unless otherwise stated, we assume that A is invertible and
that for A−1

i, j , the (i, j) entry of A−1, we have −A−1
i, j �= 0 for each i and j . When

we consider a perturbation by another matrix B, we assume that A + B is invertible.
We typically think of A as a square, n × n real matrix. For notational simplicity, we
consider A−1 and not −A−1 as this choice does not effect the determination of a sign
switch.
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2 Motivating examples

Consider a four-species system (Fig. 1b) described by the following set of differential
equations:

f1 = dN1

dt
= I + (r1 + a1,2N2)N1

f2 = dN2

dt
= (r2 + a2,1N1 + a2,2N2 + a2,3N3 + a2,4N4)N2

f3 = dN3

dt
= (r3 + a3,2N2 + a3,3N3 + a3,4N4)N3

f4 = dN4

dt
= (r4 + a4,2N2 + a4,3N3 + a4,4N4)N4 (2.1)

with ai, j , ri , I ∈ R and where at time t ∈ R the abundance of species i is given by
Ni (t) ∈ R (Takimoto et al. 2007; Novak et al. 2016). The ai, j , ri , and I parameters
respectively represent the per capita strengths of the species’ interactions, the species’
intrinsic per capita growth (death) rates, and a density-independent influx to the basal
species.

The direct effects between each pair of species can be given in terms of this system’s
Jacobian with Ai j = ∂ fi

∂N j
:

A =

⎛
⎜⎜⎝

A1,1 A1,2 0 0
A2,1 A2,2 A2,3 A2,4
0 A3,2 A3,3 A3,4
0 A4,2 A4,3 A4,4

⎞
⎟⎟⎠ . (2.2)

The structural form of the equations given in (2.1) and summarized in the matrix
A in (2.2) (with variable Ai, j ’s) is referred to as the intraguild predation motif (or
IGP motif). A realization of this motif is given by fixing values for the Ai, j . Given
fixed values for all Ai, j , the sign pattern of −A−1 is equivalent to the sign pattern of
adj(−A).

Given fixed values for the Ai, j ’s, wewish to study the change in−A−1 as a function
of perturbing (adding error to) the Ai, j ’s: replacing Ai, j with Ai, j + ε representing
the uncertainty in the value of Ai, j . Note that the sign pattern of −A−1 can be derived
from that of A−1. For example, using a realization of the IGP motif given by

IGPA =

⎛
⎜⎜⎝

−0.237 −1 0 0
0.1 −0.015 −1 −1
0 0.1 −0.015 −1
0 0.045 0.1 −0.015

⎞
⎟⎟⎠ (2.3)
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implies that

IGPA
−1 =

⎛
⎜⎜⎝

12.05 38.56 −44.24 378.95
−3.86 −9.14 10.49 −89.81
1.67 3.97 −4.70 48.96

−0.41 −0.97 0.12 −9.72

⎞
⎟⎟⎠ , (2.4)

reflecting the response of the species in row i to a press perturbation of the species in
column j . For comparison, perturbing the (4, 2) entry of IGPA by an error of −0.04
leads to

A−1
ε =

⎛
⎜⎜⎝

−0.68 8.40 −9.63 82.52
−0.84 −1.99 2.28 −19.56
0.029 0.069 −0.23 10.66

−0.084 −0.20 −0.77 −2.12

⎞
⎟⎟⎠ ,

demonstrating that such a perturbation leads to a sign change in two entries of the
perturbed system (entries (1, 1) and (4, 3), while remaining asymptotically stable.

For illustrative comparisons to the IGP motif, we use the following realization of
the trophic chain motif (Fig. 1a):

TriA =

⎛
⎜⎜⎝

−0.237 −1 0 0
0.1 −0.015 −1 0
0 0.1 −0.015 −1
0 0 0.1 −0.015

⎞
⎟⎟⎠ . (2.5)

Note that TriA is obtained from IGPA by setting A2,4 = A4,2 = 0.

3 Sign switches of the inverse of an arbitrary matrix under perturbation

We begin by introducing our technique for determining the number of sign switches
that perturbations in the entries of A will incur. To compute the inverse of the sum of
two matrices (A + B)−1 when the inverse of one, say A−1, is known, we use a result
of Miller (1981). Here, we think of B as a perturbation of A.

Theorem 3.1 [Lemma 1 of Miller (1981)] Let A and A+ B be nonsingular matrices
where B is rank one. Let g = tr

(
BA−1

) = ∑
i, j B j,i A

−1
i, j . Then g �= −1 and

(A + B)−1 = A−1 − 1

1 + g
A−1BA−1. (3.1)

This formula is also known as the Sherman–Morrison formula. Note that a variety
of perturbations can be expressed as the addition of a rank one matrix B. Indeed, the
Sherman–Morrison formula holds for any perturbation of the form B = wt · v where
w and v are row vectors and the superscript “t” denotes the transpose (Eq. (5.2) gives
such an example). We, however, will mainly be concerned with perturbing a single
entry as perturbing multiple entries can be combined by using Theorem 3.9 below.
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3.1 Perturb single entry

We apply Theorem 3.1 in the case of perturbing a single entry of the matrix A. That is,
for δk,l being the matrix (of same size as A) of zeros save a single 1 in the (k, l) entry
and zero otherwise, B = εδk,l where ε is the magnitude of the perturbation. Applying
Theorem 3.1, we have the (i, j) entry of (A + εδk,l)

−1 given by:

(A + εδk,l)
−1
i, j = A−1

i, j − εA−1
i,k A

−1
l, j

1 + εA−1
l,k

. (3.2)

Upon dividing by A−1
i, j , this leads to the following Lemma:

Lemma 3.2 Given a fixed invertible matrix A and an invertible perturbation A+εδk,l
such that for each i, j , A−1

i, j �= 0 and that A−1
l,k �= −1

ε
, the (i, j)th entry of A−1 will

have a different sign from the (i, j)th entry of (A + εδk,l)
−1 if and only if

1 − εA−1
i,k A

−1
l, j

A−1
i, j

(
1 + εA−1

l,k

) < 0. (3.3)

In words, this means that an error to the direct effect of species l on species k will cause
a qualitatively incorrect prediction to be made for the net effect of any j th species on
any i th species if and only if the ratio of: 1. the product of the error and the net effects
of k on i and of j on l, and 2. the net effect of j on i times one plus the product of the
error and the net effect of k on l, is greater than 1.

If ε is not a fixed quantity but rather drawn according to some distribution, then
Lemma 3.2 can be utilized to calculate the probability of a sign switch in the (i, j)th
entry of (A + εδk,l)

−1. For notational simplicity, let C = A−1, then assuming that
ε is drawn from a uniform distribution on [0, 1], and, for example, assuming that
Cl,k < −1 and Ci, j < 0, we have the probability that A−1

i, j differs in sign from

(A + εδk,l)
−1
i, j given by 1 − p where p has the value:

p =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + 1
Cl,k

, if
(
Ci,k < 0 ∨ Cl, j > 0

)∧(
Ci,k > 0 ∨ Cl, j ≤ 0

) ∧ Ci,kCl, j
Ci, j

≤ Cl,k + 1

− Ci, j
Ci,kCl, j+Ci, j Cl,k

− 1
Cl,k

, if
(
Ci,k > 0 ∧ Cl, j ≤ 0

)∨(
Ci,k < 0 ∧ Cl, j > 0

)
− Ci, j

Ci, j Cl,k+Ci,kCl, j
+ 1

Cl,k
, Otherwise.

Observe that this formula is explicitly given in terms of the entries of C = A−1.
Furthermore, if ε is a random variable, one can use the expression in Eq. (3.3) to

define another random variable indicating if a sign switch has occurred:
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1switch(A,ε,i, j,k,l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if 1 − εA−1
i,k A

−1
l, j

A−1
i, j

(
1+εA−1

l,k

) < 0

0, if 1 − εA−1
i,k A

−1
l, j

A−1
i, j

(
1+εA−1

l,k

) > 0.
(3.4)

Summing over i and j will return the number of sign switches that have occurred in
A−1 when perturbing the (k, l) entry of A by magnitude ε:

NS(A, ε, k, l) =
∑
i, j

1switch(A,ε,i, j,k,l). (3.5)

Note that the number of switches NS(A, ε, k, l) is a deterministic (non-random) func-
tion of A and ε. For fixed k, l, and A, the value of NS(A, ε, k, l) is an integer. Hence,
for random ε, calculating the expected number of sign switches can be accomplished
as follows: Let fε be the probability density function of the random variable ε, then
the expected total number of sign switches in A−1 when perturbing the (k, l) entry by
a magnitude given by (the random variable) ε is given by:

E(NS(A, ε, k, l)) =
∫

NS(A, x, k, l) fε(x) dx . (3.6)

Remark 1 In order to give biologically meaningful results, the probability density fε
should only be supported on those values where the resulting Jacobian has eigenvalues
with negative real part in order to guarantee the asymptotic stability of the system.
Furthermore, the probability density used in NS(A, ε, k, l) should be zero whenever
the signs of Ak,l and Ak,l + ε differ. Such a probability density is utilized in the
examples below. Note, however, that the function NS(A, ε, k, l) is still defined for ε

values where the system is unstable.
The contrapositive of Theorem 3.1 can be used to facilitate finding the interval

of single-entry perturbation values that contains zero and maintains the asymptotic
stability of the matrix A. In particular, consider perturbing a single entry Ak,l with
sign(Ak,l) = sign(Ak,l + ε). Then the largest interval I of perturbation values ε that
cause (A + εδk,l) to remain asymptotically stable satisfies:

I ⊆

⎧⎪⎪⎨
⎪⎪⎩

[
−Ak,l ,

−1
A−1
l,k

]
if Ak,l > 0 and A−1

k,l < 0
[

−1
A−1
l,k

,−Ak,l

]
if Ak,l < 0 and A−1

k,l > 0

with other such interval estimates possible for other combinations of signs of Ak,l and
A−1
l,k .

Remark 2 Picturing thenumber of switchesNS(A, ε, k, l) as a functionof ε for various
k and l reveals which entries (k, l) cause the most sign switches in A−1 when they
are perturbed. For example, the number of expected sign switches as a function of

123



886 D. Koslicki, M. Novak

Fig. 2 The number of sign switches as a function of the error in the (k, l) entry of IGPA for (k, l) = (4, 3)
and (k, l) = (2, 3). Overlain on these are truncated normal probability distributions which are non-zero only
when the corresponding system is stable. These error distributions describe an illustrative and empirically-
likely case of errors being clustered around Ak,l but not changing its sign. Such a distribution of errors
for the two entries respectively results in getting approximately 8 and 5% of predictions in −A−1 being
qualitatively incorrect

ε for the matrix IGPA from Eq. (2.3) is illustrated in Fig. 2. Also shown in Fig. 2 is
an illustrative distribution for εk,l : For the (k, l) entry, we numerically calculate the
interval Ik,l of εk,l values (containing zero) for which A is asymptotically stable and
Ak,l and Ak,l + εk,l do not differ in sign. We then let fε be the probability density
corresponding to the truncated normal distribution with variance |Ik,l |/2.
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It follows that the expected fraction of sign switches, over all n2 entries in the
matrix, is given by:

1

n2
E (NS (A, ε, k, l)) (3.7)

For the example matrix IGPA, this leads to:

1

42
E
(
NS

(
IGPA, ε, 4, 3

))
= 0.081

1

42
E
(
NS

(
IGPA, ε, 2, 3

))
= 0.048.

This means, for example, that perturbing the (4, 3) entry in IGPA according to the
aforementioned distribution will cause an average of 8.1% of the predictions to be
qualitatively incorrect.

In Fig. 3 we include heat maps of the percent of expected sign switches 100% ×
1
42
E(NS(A, ε, k, l)) over all k and l for each example matrix. The distribution over

which the expectation is taken is given in Remark 2. Figure 3a illustrates that the
qualitative dynamics of the TC motif realization are entirely sign insensitive to any
quantitative uncertainty in TriA. Figure 3b illustrates, for example, how the qualitative
dynamics of the IGPmotif realization are less sign sensitive to uncertainty in top-down
direct effect of the top-predator (species 4) on the intermediate consumer (species
3) (i.e. A3,4) as compared to uncertainty in the reciprocal bottom-up effect of the
intermediate consumer on the top-predator (i.e. A4,3). Figure 3b similarly illustrates
how the qualitative dynamics of the IGP motif realization are generally less sign
sensitive to uncertainty in the interspecific interactions (off-diagonal elements) than
in the species’ self-effects (diagonal elements). These insights are to be compared to
the quantitative response sensitivities illustrated in Fig. 5.

3.2 Limiting value of NS

In this section, we focus on describing the behavior of the number of sign switches
NS(A, ε, k, l) as ε → ±∞ and quantify how large ε must be to reach this limit-
ing value. Before describing the limiting behavior, we prove a Lemma that gives an
expression for NS(A, ε, k, l). In the following, we often use the k-minors of a matrix,
defined as follows.

Definition 3.1 (k-Minors) For an n × n matrix A, an integer k < n, unique integers
1 < i1, i2, . . . , ik ≤ n, and unique integers 1 ≤ j1, j2, . . . , jk ≤ n, let A[i1···ik , j1··· jk ]
be the sub-matrix of A obtained by deleting rows i1 through ik and columns j1 through
jk . By a k-minor, we mean a determinant of the form det

(
A[i1···ik , j1··· jk ]

)
. By a minor,

we mean a 1-minor (i.e. determinant after deleting one row and one column).

Wefirst note that for certain values of i and j , the inequality inEq. (3.3) reduces to an
expression not involving i or j . As a consequence, depending only on the perturbation
magnitude ε and the size of the entry A−1

l,k , perturbing the entry in the kth row and lth
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Fig. 3 Heat maps for the
average percent of sign switches
(defined in Eq. (3.7)) induced by
perturbation of each (k, l) entry.
Perturbations are given by the
truncated normal distribution
described in Remark 2. a The
trophic chain motif. b The
intraguild predation motif. Note
that the trophic chain undergoes
no sign switches when perturbed
(see Theorem 4.1 in Sect. 4 for
an explanation of why) while the
intraguild predation motif on
average, over all possible
perturbed k and l, experiences
7.14% of entries (that is, 1.14
entries) being qualitatively
incorrect

column of a matrix A causes the signs of all entries of the lth row and kth column of
the inverse to either match or not match the signs of the corresponding elements in the
unperturbed matrix.

Lemma 3.3 For an invertible n × n matrix A such that no entry of A−1 is zero, for
1 ≤ i, j, k, l ≤ n such that i = l, or j = k, or det(A[ki,l j]) = 0, then the expression
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Exact probabilities for the indeterminacy of complex. . . 889

1 − εA−1
i,k A

−1
l, j

A−1
i, j

(
1 + εA−1

l,k

) < 0 (3.8)

is true if and only if the logical expression

(
ε < 0 and A−1

l,k >
−1

ε

)
or

(
ε > 0 and A−1

l,k <
−1

ε

)
(3.9)

is true.

This result implies that once an error associated with the direct effect of species l on
species k causes a qualitatively incorrect prediction to be made for any one of the
network’s net effects that either emanate from species k or affect species l, then all
predictions for the net effects emanating from k and affecting l will be qualitatively
incorrect (and hence can be corrected by making the opposite qualitative prediction).

Proof The proof of this Lemma is via computation utilizing Lemma 3.2. Namely,
when i = l,

1 − εA−1
l,k A

−1
l, j

A−1
l, j

(
1 + εA−1

l,k

) = 1 − εA−1
l,k

1 + εA−1
l,k

. (3.10)

Note that 1 − εA−1
l,k

1+εA−1
l,k

< 0 if and only if either ε < 0 and A−1
l,k > −1

ε
or ε >

0 and A−1
l,k < −1

ε
. A similar calculation takes care of the case when j = k. In the case

that det(A[ki,l j]) = 0, by Theorem 2.5.2 in Prasolov (1994), det(A[ki,l j]) = 0 if and
only if A−1

i,k A
−1
l, j = A−1

i, j A
−1
l,k , hence

1 − εA−1
i,k A

−1
l, j

A−1
i, j

(
1 + εA−1

l,k

) = 1 − εA−1
i, j A

−1
l,k

A−1
i, j

(
1 + εA−1

l,k

) = 1 − εA−1
l,k

1 + εA−1
l,k

(3.11)

which, as before, is less than zero if and only if either ε < 0 and A−1
l,k > −1

ε
or

ε > 0 and A−1
l,k < −1

ε
. ��

This Lemma allows us to obtain an expression for NS(A, ε, k, l) by sep-
arating the terms where det(A[ki,l j]) = 0. In the following, let N (k, l) =∣∣{1 ≤ i, j ≤ n : i �= l, j �= k, det(A[ki,l j]) = 0

}∣∣ be the number of 2-minors equal
to zero involving the kth row and lth column (with i �= l and j �= k).
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Theorem 3.4 For an invertible n × n matrix A such that no entry of A−1 is zero, and
for 1 ≤ k, l ≤ n, and ε ∈ R,

NS(A, ε, k, l) =
∑
i �=l
j �=k

det(A[ki,l j]) �=0

1{
εA−1

i,k A−1
l, j

A−1
i, j

(
1+εA−1

l,k

)>1

} (3.12)

+ (2n − 1 + N (k, l))1{(
ε<0 ∧ A−1

l,k > −1
ε

)
∨
(
ε>0 ∧ A−1

l,k < −1
ε

)}.

��
ThisTheoremallowsus to determine the limitingbehavior of the number of switches

NS(A, ε, k, l). In particular, after a certain point, increasing the magnitude of the
perturbation ε no longer causes a sign switch in the inverse of the perturbed matrix
when compared to the original matrix.

Corollary 3.5 For an invertible n×n matrix A such that no entry of A−1 is zero, and
for 1 ≤ k, l ≤ n, if ε1, ε2 ∈ R such that

|ε1|, |ε2| > max
i �=l
j �=k

det(A[ki,l j]) �=0

∣∣∣∣∣
A−1
i, j

A−1
i,k A

−1
l, j − A−1

i, j A
−1
l,k

∣∣∣∣∣

then

NS(A, ε1, k, l) = NS(A, ε2, k, l).

In particular, when sign(ε1) = sign(Ak,l) (i.e. the error changes the magnitude of
Ak,l but not its sign), we have

NS(A, ε1, k, l) =
∑

i �=l, j �=k:det(A[ki,l j]) �=0

1{ A−1
i,k A−1

l, j

A−1
i, j A

−1
l,k

>1

} (3.13)

+ (2n − 1 + N (k, l))1{
sign

(
A−1
l,k

)
�=sign(Ak,l )

}.

Proof First, note that as a function of ε, the quantity
εA−1

i,k A
−1
l, j

A−1
i, j (1+εA−1

l,k )
is monotonic

(depending on the sign of
A−1
i,k A

−1
l, j

A−1
i, j

) with a discontinuity at ε = − 1
A−1
l,k
. Furthermore,

εA−1
i,k A

−1
l, j

A−1
i, j (1+εA−1

l,k )
= 1 if and only if ε = 1

A−1
i,k A−1

l, j

A−1
i, j

−A−1
l,k

= A−1
i, j

A−1
i,k A

−1
l, j −A−1

l,k A
−1
i, j
. Now we know

that

lim
ε→±∞

εA−1
i,k A

−1
l, j

A−1
i, j

(
1 + εA−1

l,k

) = A−1
i,k A

−1
l, j

A−1
i, j A

−1
l,k

, (3.14)
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hence, for i �= l, j �= k and such that det(A[ki,l j]) �= 0, we have that as long as

|ε1| > max
i �=l
j �=k

det(A[ki,l j]) �=0

∣∣∣∣∣
A−1
i, j

A−1
i,k A

−1
l, j − A−1

i, j A
−1
l,k

∣∣∣∣∣ ,

we have that

A−1
i,k A

−1
l, j

A−1
i, j A

−1
l,k

> 1 if and only if
ε1A

−1
i,k A

−1
l, j

A−1
i, j

(
1 + ε1A

−1
l,k

) > 1. (3.15)

Combining this with the definition given in line (3.5) proves the first part of the
Corollary. The second part of the Corollary is proved by applying this observation to
Theorem 3.4 and noting that as |ε| → ∞, the expression (ε < 0 ∧ A−1

l,k > −1
ε

) ∨ (ε >

0 ∧ A−1
l,k < −1

ε
) is true if and only if sign

(
A−1
l,k

)
�= sign(ε) = sign(Ak,l). ��

A useful application of Corollary 3.5 is when the matrix A has all its entries drawn
independently from a continuous distribution, such as the standard normal distribution
(i.e. each entry of A is drawn froman independent standard normal randomvariable). In
the limit, the expected fraction of entries that experience a sign switch has an especially
compact representation. Here, we do not concern ourselves with asymptotic stability
of the matrices utilized as we wish only to understand the behavior of NS over a
background distribution of matrices.

Corollary 3.6 For an n × n matrix A with entries drawn independently from a con-
tinuous distribution (such as independent standard normal random variables), the
asymptotic expected fraction of sign switches is given by

lim
n→∞ lim|ε|→∞EA (NS(A, ε, k, l)) /n2 = lim

n→∞
1

n2

n∑
i, j=1

P

(
A−1
i,k A

−1
l, j

A−1
i, j A

−1
l,k

> 1

)
. (3.16)

Thus, for a matrix with size approaching infinity with all entries drawn independently
from a standard normal distribution, the proportion of qualitatively incorrect predic-
tions can be expressed in a form that eases theoretical and computational calculations.

Proof For fixed k and l, the set of matrices A such that there exist i, j such that
det(A[ki,l j]) = 0 has positive codimension in the set of all real, invertible n×nmatrices
and hence has probability zero for the continuous distribution under consideration.
Hence the quantity (2n − 1+ N (k, l)) in line (3.13) is equal to 2n − 1 corresponding
to the cases i = l or j = k. However, since 2n−1

n2
→ 0 as n → ∞, applying the

expectation to Corollary 3.5 leads to the result. ��
Remark 3 Unfortunately, it appears not to be straightforward to exactly compute the

quantityP

(
A−1
i,k A

−1
l, j

A−1
i, j A

−1
l,k

> 1

)
for each i, j . Nevertheless, the expression inEq. (3.16) does
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Fig. 4 Histogram of 1
n2

NS(A, ε, k, l) obtained by sampling A with independent standard normal entries
and evaluating the right hand side of Eq. (3.16) 7000 times using n = 200, k = 25, and l = 70. The
probability density function for a beta (3.4088, 6.7448) distribution is overlaid this histogram as a blue line
(color figure online)

give a convenient way to sample the limiting expected fraction of switches (as the right
hand side is free from the perturbation value ε). To demonstrate, we fixed n = 200
and k = 25, l = 70 and computed the right hand side of Eq. (3.16) for 7000 draws of
matrices with independent standard normal entries. The resulting distribution is show
inFig. 4 and does not appear to depend significantly on the chosen k and l. Interestingly,
the average percent of sign switches in this computation was approximately 33%, and
the resulting distribution appears to be similar to a beta distribution (shown in Fig. 4
with a blue line) indicating that further simplifications of (3.16) may be possible.

In comparison, even for small n such as when n = 4, using Corollary 3.5, the mean
(averaged over k and l and 5000 draws of a entry-wise independent standard normal
distribution) expectation of signs switches is give by,

lim|ε|→∞
1

42
∑
k,l

EA (NS(A, ε, k, l)) ≈ 0.33.

We compare this value to our two example network motifs. For these it only makes
sense to perturb the non-zero entries (k, l) such that Ak,l �= 0, and only such that
sign(ε) = sign(Ak,l). For the trophic chain motif, TriA, for each k and l,

lim
ε→∞NS

(
TriA, sign

(
TriAk,l

)
ε, k, l

)
= 0.

Hence, no sign switches will occur for any choice of non-zero (k, l) entries; the trophic
chain is entirely sign insensitive to error in its Ak,l magnitudes (see also Fig. 3a). The
reason for this is given in Theorem 4.2.
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In contrast, for the intraguild predation motif IGPA the average (over all non-zero k
and l) fraction of sign switches is given by using Corollary 3.5 which results in:

lim
ε→∞

1

12

∑

k,l s.t. IGPAk,l �=0

1

42
NS

(
IGPA, sign

(
IGPAk,l

)
ε, k, l

)
= 0.427,

showing that for this matrix, perturbing a single entry leads to a higher average fraction
of sign switches than is expected on average when using independent standard normal
distributions for the entries. An explanation for this is given in Sect. 5.

3.3 How perturbation affects the norm of the inverse

We now aim to investigate how perturbing a single entry in A affects the norm of
the inverse. We do this for a few different norms, each useful in describing how
quantitatively different the inverse of the perturbed matrix is from the inverse of the
unperturbed matrix (i.e. how sensitive predictions of species’ quantitative responses
are to error in A). Recall our standing assumptions that A is invertible, for each i and
j , A−1

i, j �= 0, and when we consider a perturbation by another matrix B, we assume
that A + B is invertible.

3.3.1 Entry-wise 1-norm

We first investigate the effect perturbation has on the entry-wise (vectorized) 1-norm.
We use the atypical notation ||A||T to emphasize that this means the total absolute
value of the entries of the matrix A, and to differentiate it from the operator 1-norm
||A||1.
Definition 3.2 For an n × m matrix A, let

||A||T =
n∑

i=1

m∑
j=1

|Ai, j |.

A few other matrix norms will be helpful:

Definition 3.3 Let A be an n×m matrix, and 1 ≤ p ≤ ∞. Then the operator p-norm
of A is given by

||A||p = max
x �=0

||Ax ||p
||x ||p

where || · ||p is the standard vector p-norm.

Recall that ||A||1 = max1≤ j≤n
∑n

i=1 |Ai, j | is the maximum absolute column sum of
A and ||A||∞ = max1≤i≤n

∑n
j=1 |Ai, j | is the maximum absolute row sum of A.
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Remark 4 In this section, we do not incorporate the asymptotic stability of the per-
turbed matrix as we aim to study arbitrarily large perturbations. This will result in a
global indication of how perturbation affects change in the value of a given norm. It
is also straightforward to demonstrate that the norm expressions considered (such as
in Eq. (3.19) below) can, as functions of ε, be decomposed to be piecewise monotone
with at most three pieces, so estimation of the norm as ε → ∞ provides bounds for
any other perturbation value (such as when the perturbations are restricted to those
that retain asymptotic stability).

As |ε| approaches infinity, the entry-wise 1-norm (total magnitude) of the differ-
ence between A−1 and the perturbed matrix (i.e. the difference in the total summed
responses of all species) reaches a (finite) fixed value. Indeed, using Eq. (3.2) we find
that

||A−1 − (A + εδk,l)
−1||T =

n∑
i, j=1

∣∣∣A−1
i, j − (A + εδk,l)

−1
i, j

∣∣∣ (3.17)

=
n∑

i, j=1

∣∣∣∣∣
εA−1

i,k A
−1
l, j

1 + εA−1
l,k

∣∣∣∣∣ (3.18)

=
∣∣∣∣∣

ε

1 + εA−1
l,k

∣∣∣∣∣
n∑

i=1

|A−1
i,k |

n∑
j=1

|A−1
l, j | (3.19)

−−−−→
ε→±∞

1

|A−1
l,k |

n∑
i=1

|A−1
i,k |

n∑
j=1

|A−1
l, j |. (3.20)

This means that quantitative sensitivity is reduced by having the absolute value of
the net effect of k on l be large relative to the sum of k’s absolute net effects on all
species and the sum of the absolute net effects of all species on l.

Further estimations are possible, including the observation that Eq. (3.20) implies
that

lim
ε→∞ ||A−1 − (A + εδk,l)

−1||T ≤ 1

|A−1
l,k | ||A

−1||1||A−1||∞.

Similarly, if all entries of A are nonzero, summing the relative total magnitude differ-
ences gives:

lim
ε→∞

∑
k,l

||A−1 − (A + εδk,l)
−1||T

‖A−1‖T =
∥∥∥A−1

∥∥∥
T

∥∥∥1/A−1
∥∥∥
T

where by 1/A−1 we mean the matrix whose (i, j) entry is equal to 1
A−1
i, j
. This leads to

the following measure of quantitative sensitivity of a matrix:
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Definition 3.4 For an invertible n × n matrix A, let M be the number of non-zero
entries in A: M = ∣∣{(i, j) s.t. Ai, j �= 0}∣∣. By the magnitude response sensitivity, we
mean

MRS(A) = 1

M · ‖A−1‖T
∑

k,l s.t. Ak,l �=0

1

|A−1
l,k |

n∑
i=1

|A−1
i,k |

n∑
j=1

|A−1
l, j |. (3.21)

The quantityMRS(A) gives themean (averaged over all individually perturbed entries)
relative total magnitude difference between the inverse of the unperturbed matrix and
the inverse of the matrix resulting from letting one entry be perturbed in an arbitrarily
large fashion. Note that for matrices with no zero entries, the quantity MRS(A) is
minimized for matrices A with all entries equal in absolute value: any minimizer of
the quantity ||A−1||T||1/A−1||T has the property that A−1 = aD for a ∈ R and D
an invertible matrix with entries in the set {−1, 1}. Conversely, matrices A with large
variation (in absolute value) in their entries will exhibit large values of MRS(A), and
hence larger quantitative sensitivity.

Using this definition, we can calculate the average (over all perturbed k and l) total
relative error between A−1 and

(
A + εδk,l

)−1. For TriA, we have that

MRS
(
TriA

)
= 3.53.

This indicates that, on average, perturbing (to infinity) a single nonzero entry of TriA
will result in the values of the inverse being off by factor of approximately 3.53 when
compared to the unperturbed matrix. For IGPA, we find that

MRS
(
IGPA

)
= 1.63.

This indicates that, on average, perturbing (to infinity) a single nonzero entry of IGPA
will result in the values of the inverse being off by a factor of only approximately 1.63
when compared to the unperturbed matrix.

Hence, while IGPA is more sign sensitive to large ε perturbations (see the remark
at the end of Sect. 3.2), the matrix TriA exhibits significantly less total change in
magnitude when perturbed; the trophic chain is more quantitatively sensitive to error
than is the intraguild predation motif. Figure 5, where the individual relative errors

limε→∞ ||A−1−(A+εδk,l )
−1||T

||A−1||T are depicted in a heat map for each k and l, visualizes
which entries are the cause of this quantitative sensitivity. For example, the quantitative
dynamics of the trophic chain are clearly most sensitive to uncertainty in the top-down
effect of species 3 (the intermediate consumer) on the primary consumer (species
2) (i.e. A2,3), and relatively insensitive to uncertainty in the reciprocal interaction of
these two species (i.e. A3,2). Compare this to the qualitative sensitivities shown in
Fig. 3.

123



896 D. Koslicki, M. Novak

Fig. 5 Heat maps for the
(quantitative) magnitude
response sensitvity between the
perturbed and unperturbed
matrices:

limε→∞ ||A−1−(A+εδk,l )
−1||T

||A−1||T .

a The trophic chain motif. b The
intraguild predation motif. The
average quantitative relative
error of the intraguild predation
motif is roughly half as large as
the average quantitative relative
error of the trophic chain

3.3.2 Spectral norm

We now study how perturbing the matrix A affects the spectral norm (|| · ||2 from
Definition 3.3) of the inverse matrix. While the spectral norm has no clear ecological
interpretation, our goal is to relate the spectral norm of A−1 − (

A + εδk,l
)−1 with the

singular values of A whose importance and properties are well known. We first define
our notation.
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Definition 3.5 (Singular values) For a real matrix A ∈ R
×m the singular values σi (A)

are the square roots of the eigenvalues of AT A listed (with their multiplicities) in non-
increasing order

σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A).

We will at times write σmax(A) and σmin(A) for σ1(A) and σn(A) respectively. Recall
that the spectral norm ||A||2 is equal to the dominant singular value: ||A||2 = σ1(A).
We will also have need of the Frobenius norm.

Definition 3.6 (Frobenius norm) For a real matrix A ∈ R
m×n , let

||A||F =
⎛
⎝

m∑
i=1

n∑
j=1

|Ai, j |2
⎞
⎠

1/2

.

Recall that for any matrix A ∈ R
m×n , ||A||F =

(∑min{m,n}
i=1 σi (A)2

)1/2
and so

||A||2 ≤ ||A||F with equality if and only if A is rank 1.
We aim to sum the norm

∣∣∣∣A−1 − (A + εδk,l)
−1
∣∣∣∣
2 over all k and l entries to thereby

estimate the Euclidean distances between the unperturbed and perturbed inversematri-
ces. We consider the ecologically realistic case where we only perturb the non-zero
entries of A and ensure that the perturbation to the (k, l) entry does not change the sign
of Ak,l . Hence, when perturbing the (k, l) entry, let t > 0 be a variable real number
and define εk,l(t) = sign(Ak,l)t , recalling that for a scalar x , sign(x) is equal to 1 if
x > 0, −1 if x < 0, and 0 if x = 0.

Theorem 3.7 Let A ∈ R
n×n be an invertible real matrix such that for each k, l =

1, . . . , n, A−1
k,l �= 0. Let t ∈ R>0 and for each k, l = 1, . . . , n, let εk,l(t) = sign(Ak,l)t .

Then

lim
t→∞

n∑
k,l=1

∣∣∣
∣∣∣A−1 − (

A + εk,l(t)δk,l
)−1

∣∣∣
∣∣∣2
2

≤ max
k,l

1

|A−1
k,l |2

(
n∑

i=1

1

σi (A)2

)2

.

This means that the maximum difference between the inverse of the perturbed and
the inverse of the unperturbed matrix (as quantified by the spectral norm) is inversely
related to the absolute values of the inverse of the unperturbed matrix and to the
singular values of the unperturbed matrix.

Proof Observe that the matrix with (i, j) entry equal to
εA−1

i,k A
−1
l, j

1+εA−1
l,k

, has rank equal to

1 as it is equal to a scalar times an outer product involving a column and a row of
A−1. Combining this fact with Theorem 3.1 allows us to relate the spectral norm of
A−1 − (

A + εδk,l
)−1 with the Frobenius norm of the outer product of the kth column

and lth row of A−1. Calculating:
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n∑
k,l=1

∣∣∣
∣∣∣A−1 − (

A + εk,l(t)δk,l
)−1

∣∣∣
∣∣∣2
2

(3.22)

=
n∑

k,l=1

n∑
i, j=1

∣∣∣∣∣

∣∣∣∣∣A
−1
i, j −

(
A−1
i, j − εk,l(t)A

−1
i,k A

−1
l, j

1 + εk,l(t)A
−1
l,k

)∣∣∣∣∣

∣∣∣∣∣
2

2

(3.23)

=
n∑

k,l=1

n∑
i, j=1

∣∣∣∣∣
εk,l(t)A

−1
i,k A

−1
l, j

1 + εk,l(t)A
−1
l,k

∣∣∣∣∣
2

(3.24)

=
n∑

k,l=1

∣∣∣∣∣
εk,l(t)

1 + εk,l(t)A
−1
l,k

∣∣∣∣∣
2 n∑
i, j=1

∣∣∣A−1
i,k A

−1
l, j

∣∣∣2 (3.25)

≤ max
k,l

∣∣∣∣∣
εk,l(t)

1 + εk,l(t)A
−1
l,k

∣∣∣∣∣
2 n∑
k,l=1

n∑
i, j=1

∣∣∣A−1
i,k A

−1
l, j

∣∣∣2 (3.26)

= max
k,l

∣∣∣∣∣
εk,l(t)

1 + εk,l(t)A
−1
l,k

∣∣∣∣∣
2 n∑
i,k=1

∣∣∣A−1
i,k

∣∣∣2
n∑

l, j=1

∣∣∣A−1
l, j

∣∣∣2 (3.27)

= max
k,l

∣∣∣∣∣
εk,l(t)

1 + εk,l(t)A
−1
l,k

∣∣∣∣∣
2 ∣∣∣
∣∣∣A−1

∣∣∣
∣∣∣4
F

(3.28)

= max
k,l

∣∣∣∣∣
εk,l(t)

1 + εk,l(t)A
−1
l,k

∣∣∣∣∣
2 ( n∑

i=1

σi (A
−1)2

)2

. (3.29)

Recalling that we defined εk,l(t) = sign(Ak,l)t , we have

lim
t→∞max

k,l

∣∣∣∣∣
εk,l(t)

1 + εk,l(t)A
−1
l,k

∣∣∣∣∣
2

= lim
t→∞max

k,l

∣∣∣∣∣
t

1 ± t A−1
l,k

∣∣∣∣∣
2

= max
k,l

1

|A−1
k,l |2

.

Finally, using the fact that σi (A−1) = 1/σi (A) for all i , and taking the limit as t → ∞,
the result follows. ��
In the case where no entry of A is zero, we have a lower bound as well.

Theorem 3.8 Let A ∈ R
n×n be an invertible real matrix such that for each k, l =

1, . . . , n, both Ak,l �= 0 and A−1
k,l �= 0. Let t ∈ R>0 and for each k, l = 1, . . . , n, let

εk,l(t) = sign(Ak,l)t . Then

lim
t→∞

n∑
k,l=1

∣∣∣
∣∣∣A−1 − (

A + εk,l(t)δk,l
)−1

∣∣∣
∣∣∣2
2

≥ min
k,l

1

|A−1
k,l |2

1

σmin(A)4
.

Therefore, theminimumdifference between the inverse of the perturbed and the inverse
of the unperturbed matrix (as quantified by the spectral norm) is also inversely related
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to the absolute values of the inverse of the unperturbed matrix (as in Theorem 3.7) and
to the smallest singular value of the unperturbed matrix.

Proof The proof follows from a calculation similar to that in the proof of Theorem
3.7:

n∑
k,l=1

∣∣∣
∣∣∣A−1 − (

A + εk,l(t)δk,l
)2∣∣∣

∣∣∣2
2

(3.30)

=
n∑

k,l=1

n∑
i, j=1

∣∣∣∣∣
εk,l(t)A

−1
i,k A

−1
l, j

1 + εk,l(t)A
−1
l,k

∣∣∣∣∣
2

(3.31)

=
n∑

k,l=1

∣∣∣∣∣
εk,l(t)

1 + εk,l(t)A
−1
l,k

∣∣∣∣∣
2 n∑
i, j=1

|A−1
i,k |2|A−1

l, j |2 (3.32)

≥ min
k,l

∣∣∣∣∣
εk,l(t)

1 + εk,l(t)A
−1
l,k

∣∣∣∣∣
2

||A−1||4F (3.33)

≥ min
k,l

∣∣∣∣∣
εk,l(t)

1 + εk,l(t)A
−1
l,k

∣∣∣∣∣
2

||A−1||42 (3.34)

= min
k,l

∣∣∣∣∣
εk,l(t)

1 + εk,l(t)A
−1
l,k

∣∣∣∣∣
2

σmax(A
−1)4 (3.35)

= min
k,l

∣∣∣∣∣
εk,l(t)

1 + εk,l(t)A
−1
l,k

∣∣∣∣∣
2

1

σmin(A)4
. (3.36)

Since each entry of A is nonzero, this implies that for all k, l, εk,l(t) = sign(Ak,l)t ,

and hence limt→∞ mink,l

∣∣∣∣ εk,l (t)

1+εk,l (t)A
−1
l,k

∣∣∣∣
2

> 0. Taking limits as t → ∞ leads to the

result. ��

3.4 Perturbing multiple esntries

Up to this point we have assumed that only a single entry of A is perturbed at a
time. However, in most applications, multiple if not all entries will have some level of
uncertainty associated. Fortunately, Theorem 3.1 can be applied iteratively to compute
(A + B)−1 when B is of rank r by writing B as a sum of rank 1 matrices. This leads
to the following result:

Theorem 3.9 [Theorem 1 ofMiller (1981)] Let A and A+B be nonsingular matrices
where B = B(1) + · · · + B(r) has rank r and each B(i) has rank 1 for i = 1, . . . , r .
Let C(k+1) = A + B(1) + · · · + B(k) for k = 1, . . . , r and C(1) = A. Then with
g(k) = 1

1+tr(C−1
(k) B(k))

,
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C−1
(k+1) = C−1

(k) − g(k)C
−1
(k) B(k)C

−1
(k) .

In particular,

(A + B)−1 = C−1
(r) − g(r)C

−1
(r) B(r)C

−1
(r) .

Utilizing Theorem 3.9 allows one to programmatically compute the inverse of
(A+ B)−1, an arbitrary set of perturbations of the matrix A with any entry Bi, j = εi, j
being either a fixed real number or a suitably chosen random variable. This allows
results similar to Lemma 3.2 to be obtained through the assistance of a computer
algebra system. Similarly, formulas for the generalization of the number of switches
NS and the expected number of switches E(NS), while notationally unwieldy, are
computationally straightforward to utilize, as they still only depend on the entries of
A−1 and the values of Bi, j = εi, j .

3.4.1 Index of sign sensitivity

We next perturb more than one entry to obtain an index of sign sensitivity which
characterizes the overall proclivity of an arbitrary perturbation to cause sign switches
in the inverse of the perturbed matrix. We motivate this using our example motifs,
recalling for convenience that the definition of IGPA given in Eq. (2.3) is:

IGPA =

⎛
⎜⎜⎝

−0.237 −1 0 0
0.1 −0.015 −1 −1
0 0.1 −0.015 −1
0 0.045 0.1 −0.015

⎞
⎟⎟⎠ . (3.37)

We first consider a perturbation to IGPA of B, defined by

B =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 ε2,4
0 0 0 0
0 ε4,2 0 0

⎞
⎟⎟⎠ , (3.38)

where ε2,4 and ε4,2 range over the given intervals. This case is ecologically relevant
and is illustrative to consider as it represents the case where all entries of IGPA are
known exactly, except the (2, 4) and (4, 2) entries, and where the signs of these entries
are known, but where their magnitudes are allowed to vary over an arbitrarily chosen
interval. Applying Theorem 3.9 allows one to obtain a (large) formula for the inverse
of IGPA + B.

To illustrate, we focus on the (1, 1) entry of
(
IGPA + B

)−1
and compare this to

the (1, 1) entry of
(
IGPA

)−1
to see what values of ε2,4 and ε4,2 cause the sign of this

entry to switch. Utilizing a computer algebra system and Theorem 3.9, we find that
the (1, 1) entry will not switch sign when either of the following two inequalities are
satisfied:
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Fig. 6 Depiction of the region where the perturbation values ε2,4 and ε4,2 cause a sign switch in the (1, 1)

entry of
(
IGPA + B

)−1
in comparison to the sign of the (1, 1) entry of

(
IGPA

)−1
. Values of ε2,4 > 1

and ε4,2 < −0.045 are not biologically relevant because they alter the sign structure of A, but are depicted
here for clarity. Note that the motif TriA corresponds to the highlighted special case where the two errors
are of equal magnitude but opposite in sign to their respective entries in IGPA. Hence this depiction also
represents an assessment of alternative network topologies

142.392

3ε2,4 + 197
− 0.712 <ε4,2 < −0.000025(85400ε2,4 + 250573)

3ε2,4 + 197

or

−0.000025(85400ε2,4 + 250573)

3ε2,4 + 197
<ε4,2 <

142.39

3ε2,4 + 197
− 0.712.

Plotting the region where this expression is false leads to a depiction of the region of
sign sensitivity (i.e. sign indeterminacy): the region where values of ε2,4 and ε4,2 cause

a sign switch in the (1, 1) entry of the perturbation
(
IGPA + B

)−1
when compared to

the (1, 1) entry of
(
IGPA

)−1
(Fig. 6).

For general A, we can generalize the approach to where Bi j = εi j is a matrix of
same size as Awith each εi, j taking on values in a given interval (while still preserving
the sign of A + B in comparison to A) and consider the resulting inequalities for all
entries of (A + B)−1

i j . Comparing the volume of the region where this systems of
inequalities is not all true to the total volume of the perturbation space leads to an
index of sign sensitivity:

Definition 3.7 Given a fixed invertible m × n matrix A and an m × n matrix with
entries Bi, j = εi, j whose values range over the region R ⊂ Rm+n , let S be the
subregion in R satisfying:

(ε1,1, . . . , εm,n) ∈ S ⇐⇒ ∃i, j, (A + B)−1
i, j has the opposite sign as A

−1
i, j . (3.39)
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Then define the sign sensitivity of A as

SS(A) = vol(S)

vol(R)
. (3.40)

This index is interpreted as the percentage of perturbation space in which some entry
of the perturbed matrix inverse (A + B)−1 changes sign in comparison to A−1. This
definition can be extended by incorporating a probability distribution over R (and
subsequently S as well):

Definition 3.8 Given a fixed invertible m × n matrix A and an m × n matrix with
entries Bi, j = εi, j whose values range over the region R ⊂ Rm+n according to the
multivariate distributionD supported on R. Let S be the subregion in R satisfying:

(ε1,1, . . . , εm,n) ∈ S ⇐⇒ ∃i, j, (A + B)−1
i, j has the opposite sign as A

−1
i, j . (3.41)

Then define the distributional sign sensitivity of A as

SSD(A) = PD(S) (3.42)

Due to Theorem 3.9 and the subsequent discussion, both SS(A) and SSD(A) can be
computed explicitly and hence efficiently via Monte-Carlo sampling.

For example, for D being the product of independent uniform distributions over
intervals of length 0.01 that do not change the signs of the original matrix A and set
to zero when the perturbation causes the system to become asymptotically unstable,
we calculate the distributional sign sensitivity of IGPA to be

SSD
(
IGPA

)
≈ 0.37,

indicating that approximately 37% of all perturbation values incur sign changes in(
IGPA

)−1
due to this error distribution. Equivalently, thismeans if each εi, j is a uniform

random variable in the interval [− IGPAi, j , 1 − IGPAi, j ] for IGPAi, j > 0 and [−1 −
IGPAi, j ,− IGPAi, j ] for IGPAi, j < 0, and a point mass on 0 if IGPAi, j = 0, then the

probability of at least one sign switch occurring in
(
IGPA + B

)−1
in comparison to(

IGPA
)−1

is equal to 0.37.
In comparison, for the trophic chain motif TriA and a similarly defined distribution

D,

SSD
(
TriA

)
= 0.

This corresponds to Theorem 4.2 wherein we show that for this topology, the signs
of the inverse do not depend on the magnitudes of the Ai, j entries. Note that, just as
in Corollary 3.6, the index of distributional sign sensitivity may be applied using any
other distributions of errors as well.
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4 The sign sensitivity of tridiagonal matrices

The trophic chain motif corresponds to a tridiagonal matrix. We will subsequently
utilize this fact for decomposingnetworks to understand their sensitivity. In this Section
we therefore investigate the qualitative sensitivity of tridiagonal matrices.

A number of authors have derived explicit formulas for the inverse of a tridiagonal
matrix (Usmani 1994a, b; Fonseca 2007; Lewis 1982). We use the notation of Fonseca
(2007) for the following Theorem:

Theorem 4.1 [Lemma 3 of Usmani (1994b)]Given an n×n nonsingular tridiagonal
matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 b1
c1 a2 b2

c2
. . .

. . .

. . .
. . . bn−1
cn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4.1)

let θi satisfy the recurrence relation

θi = aiθi−1 − bi−1ci−1θi−2, i = 2, . . . , n (4.2)

with initial conditions θ0 = 1, θ1 = a1. Let ψi satisfy the recurrence relation

ψi = aiψi+1 − bi ciψi+2, i = n − 1, . . . , 1 (4.3)

with initial conditions ψn+1 = 1, ψn = an. Then

(
T−1

)
i, j

=
{

(−1)i+ j bi · · · b j−1θi−1ψ j+1/θn if i ≤ j

(−1)i+ j c j · · · ci−1θ j−1ψi+1/θn if i > j.
(4.4)

Using this result, we can demonstrate when no entry of T−1 will change sign as the
elements of T are perturbed. For a given matrix A, by sign(A) we mean a matrix with
(i, j)th entry equal to sign(Ai, j ). We now show that for certain tridiagonal matrices
T , the sign pattern of T−1 depends only on the sign pattern of T and not on the
magnitudes of the entries of T .

Theorem 4.2 Let T be a nonsingular tridiagonal matrix as in Theorem 4.1 such that
for all i and j , if ai �= 0 and a j �= 0, then sign(ai ) = sign(a j ), and if ci �= 0 and
bi �= 0, then sign(ci ) = −sign(bi ). Then sign(T−1

i, j ) can be calculated directly from
sign(T ).

In other words, the qualitative net effects between species in a trophic chain motif are
determined completely by the topology of the motif and not by the magnitudes of the
interaction strengths.
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Proof We sketch the proof for the case where for all i , ai ≤ 0, bi ≤ 0, and ci ≥ 0 as
the other cases proceed similarly. Using the same notation as in equation (4.1),

θ1 = a1 ≤ 0 (4.5)

θ2 = a2θ1 − c1b1θ0 =
positive︷︸︸︷
a2a1 −

negative︷︸︸︷
c1b1 ≥ 0 (4.6)

θ3 =
negative︷︸︸︷
a3θ2 −

positive︷ ︸︸ ︷
c2b2θ1 ≤ 0. (4.7)

Continuing in this fashion, one can see that

sign(θi ) =
{
1 if i is even

−1 if i is odd
. (4.8)

Proceeding in a similar fashion for ψi , one can observe that

sign(ψi ) =
{
1 if i �≡ n mod 2
−1 if i ≡ n mod 2

. (4.9)

Thus, since T−1
i, j is equal to a product of terms whose signs do not depend on the

magnitude of ak , bk , or ck , the Theorem immediately follows. ��
For the matrix TriA, this implies that if we perturb the entries of TriAwithout chang-

ing their signs, the resulting inverse will have the same sign pattern as that of the

inverse of the unperturbed matrix: sign
((

TriA
)−1

)
. This indicates why we previ-

ously found that the sign sensitivity SSD
(
TriA

) = 0, and that for any k, l, the value
limε→∞ NS

(
TriA, sign

(
TriAk,l

)
ε, k, l

) = 0. This insight extends to any linear chain
of species interactions, including the motifs of apparent competition and exploitative
competition (Holt 1977).

In terms of asymptotic stability, many ecologically relevant tridiagonal matrices
T (as given in expression (4.1)) are asymptotically stable no matter the perturbation
magnitude (while still preserving the sign pattern of T ). Indeed, if T has a negative
main diagonal and symmetric off-diagonal entries of opposite sign, we can define the

diagonal matrix M by: M1,1 = 1, M2,2 =
√

c1
b1
, Mn,n =

√
cn−1cn−2
bn−1bn−2

for n > 2, and

Mi, j = 0 otherwise. Then T can be decomposed as T = M−1(S + D)M where S
is a skew-symmetric matrix and D is a diagonal matrix with negative main diagonal.
The eigenvalues of such matrices all have strictly negative real part (Horn and Johnson
2012).

5 The sign sensitivity of the IGP motif

In Sect. 3.4 it was seen that even slight perturbations of the entries of the IGPA matrix
caused sign switches in it inverse (i.e. the sign sensitivity SSD(IGPA) ≈ 0.37). We
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here provide the means to understand why this is so by combining the use of Theorems
3.1 and 4.1.

For convenience, recall that

IGPA =

⎛
⎜⎜⎝

−0.237 −1 0 0
0.1 −0.015 −1 −1
0 0.1 −0.015 −1
0 0.045 0.1 −0.015

⎞
⎟⎟⎠ . (5.1)

This matrix can be written as the sum of tridiagonal matrix plus a rank one matrix:

IGPA =

⎛
⎜⎜⎝

−0.237 −1 0 0
0.1 0.435 −1 0
0 0.1 −0.015 −1
0 0 0.1 −1.015

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

0
−1
0
1

⎞
⎟⎟⎠ · (0 0.045 0 1

)
. (5.2)

Let T be the tridiagonal matrix in this decomposition:

T =

⎛
⎜⎜⎝

−0.237 −1 0 0
0.1 0.435 −1 0
0 0.1 −0.015 −1
0 0 0.1 −1.015

⎞
⎟⎟⎠ (5.3)

and let B be the rank one matrix which is the outer product of u and v,

u =

⎛
⎜⎜⎝

0
−1
0
1

⎞
⎟⎟⎠ (5.4)

v′ = (
0 0.045 0 1

)
(5.5)

B = uv′ =

⎛
⎜⎜⎝
0 0 0 0
0 −0.045 0 −1
0 0 0 0
0 0.045 0 1

⎞
⎟⎟⎠ . (5.6)

The matrix B can therefore be thought of as a perturbation to a certain subset of entries
in A, a situation that can be analyzed by the techniques developed in Sect. 3.4. We
therefore also have IGPA = T + B, such that the matrix IGPA can be viewed as a
perturbation of the tridiagonal matrix T . Observe that Theorem 4.1 indicates that the
signs of the entries of T−1 depend on the magnitude of the entries of T . This is due
critically to the entry T2,2 = 0.435 which causes the entries on the main diagonal of

123



906 D. Koslicki, M. Novak

T to not all have the same sign. It is because T2,2 is positive that T is sign sensitive,
as seen in the proof of Theorem 4.2. The addition of the rank 1 perturbation B makes
IGPA even more sign sensitive (Sect. 3). Indeed, the decomposition of IGPA into T
and B reveals that the sign sensitivity of IGPA would be most reduced by having the
magnitude of T4,2 be less than the magnitude of T2,2 as then only the sign sensitivity
of B would be of consequence. In contrast, perturbations to the T2,4 entry will not
affect the sign sensitivity of IGPA because T2,4 has the same sign as T4,4. In ecological
terms, the sign sensitivity of the intraguild predation motif is driven by the sensitivity
of the bottom-up effect of the basal resource on the top consumer rather than by the
reciprocal top-down effect, which is consistent with our observations in Fig. 3.

More generally, utilizing Theorem 3.1, we have a formula for the inverse of IGPA:

(
IGPA

)−1 = (T + B)−1 = T−1 − 1

1 + v′T−1u
T−1vv′T−1. (5.7)

Since the signs of T−1 depend on themagnitudes of the entries of T , the above formula
indicates that the signs of

(
IGPA

)−1
must also depend on the magnitudes of the entries

of IGPA. This is why the signs of the inverse of IGPA are sensitive to uncertainty in the
entries of the original matrix.

6 Conclusions

The primary contributions of this work are four indices that characterize the qualitative
and quantitative sensitivity of press perturbation responses to uncertainty (or intrinsic
variation) in a system’s interaction strengths and topology:

1. NS(A, ε, k, l), which denotes the number of sign switches incurred by an estima-
tion error of magnitude ε to the (k, l) entry of A,

2. the magnitude response sensitivity MRS(A), which quantifies the relative total
magnitude difference between a system’s true press perturbation responses and
those predicted with estimation error, and

3. the sign sensitivity indices SS(A) and SSD(A), which quantify the percentage of
possible error magnitude space in which at least one sign switch will occur, with
error respectively considered as either a volume or a distribution of magnitudes.

The NS(A, ε, k, l) index, which underlies much of our approach, enables one to
identify the most sensitive interactions within the network which must be estimated
most accurately to produce qualitatively robust predictions. Importantly, these indices
are exact and may be computed with relative ease, thereby obviating the need for
simulations in assessing the indeterminacy of complex networks. A key advance is
the separation of the estimation error magnitudes from their frequency distribution.
Together with recent statistical advances in the empirical characterization of uncer-
tainty in ecological networks (Wolf et al. 2015; Poisot et al. 2016), our study thereby
bridges the way to probabilistic predictions of ecosystem dynamics (Novak et al.
2016).

Applications of the indices to two well-studied food webmotifs provide a proof-of-
concept demonstration for how the indeterminacy of larger, truly complex networks
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may be decomposed and understood. They also illustrate the useful insights the indices
can provide. For example, the observation that the trophic chain realization is more
quantitatively sensitive to uncertainty than is the intraguild predation realization,
despite the trophic chain being entirely sign insensitive to any error, may be ascribed
to the top-down link between the intermediate consumer and the secondary consumer
(i.e. TriA2,3, Fig. 5a). It is this interaction that will need to be estimated most accu-
rately for accurate quantitative predictions to be made. Similarly, our approach also
elucidates why the qualitative dynamics of the IGP realization are less sign insensitive
to uncertainty in the top-down direct effect of the top-predator on the intermediate
consumer (IGPA3,4) than to uncertainty in the reciprocal bottom-up effect of the inter-
mediate consumer on the top-predator (IGPA4,2) as shown in Fig. 3b), and explained in
Sect. 5). This particular insight indicates that qualitative predictions for this motif are
more sensitive to error in the characterization of the top-predator’s numerical response
(i.e. the efficiency with which the predator converts consumed prey to offspring) than
to error in the characterization of its functional response (i.e. the rate at which the
predator consumes prey). Future work will need to address the degree to which this
conclusion is dependent on the specific choice of parameters used in our example, or
is general to the structure of the motif itself.

It is important to note that not all of our treatments of indeterminacy considered the
stability and feasibility of the perturbed matrix. In interpreting the quantitative (norm)
sensitivities of the TriA and IGPAmotifs we ignored the requirement that no bifurcations
are affected by the addition of errors via B. The network properties that control these
important attributes of complex networks remain an active area of research (Allesina
and Tang 2012; Rohr et al. 2014). That these attributes are directly related to a net-
work’s quantitative sensitivity is evidenced by the influence of the singular values in
determining the upper and lower bounds of the spectral norm difference between the
inverse of the perturbed and unperturbedmatrices (Theorems 3.8 and 3.7). Indeed, this
observation suggests that a network’s quantitative sensitivity may be of empirical use
as an early warning indicator of bifurcation events across which qualitative predictions
will surely be inaccurate (Novak et al. 2016; Scheffer et al. 2012).

More generally, our theorems highlight how the analysis of qualitative models (i.e.
loop analysis) represents a special case of the analysis of quantitative models using
our approach. As evidenced in Fig. 6, the assessment of alternative network topologies
reflects the case in which the assumedmagnitudes of the εi, j errors correspond exactly
to the negative magnitudes of their respective Ai, j elements. Likewise, the addition of
new links corresponds to the perturbation of the zero entries of A. More specifically,
alternative network topologies reflect alternative perturbations of each other, as illus-
trated in Sect. 5 by the decomposition of the intraguild predation motif into the trophic
chain motif. The ability to characterize the region of parameter space within which no
sign switches occur by analytical means (see Sect. 3.4) will thus be particularly useful
in applications where quantitative estimates of interaction strengths are unavailable,
enabling a more robust determination of the consequences of characterizing interac-
tions by only their sign and a unit-magnitude strength.
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