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abstract: All ecosystems are subjected to chronic disturbances,
such as harvest, pollution, and climate change. The capacity to fore-
cast how species respond to such press perturbations is limited by
our imprecise knowledge of pairwise species interaction strengths
and the many direct and indirect pathways along which perturbations
can propagate between species. Network complexity (size and con-
nectance) has thereby been seen to limit the predictability of ecolog-
ical systems. Here we demonstrate a counteracting mechanism in
which the influence of indirect effects declines with increasing net-
work complexity when species interactions are governed by universal
allometric constraints. With these constraints, network size and
connectance interact to produce a skewed distribution of interaction
strengths whose skew becomes more pronounced with increasing
complexity. Together, the increased prevalence of weak interactions
and the increased relative strength and rarity of strong interactions
in complex networks limit disturbance propagation and preserve
the qualitative predictability of net effects even when pairwise interac-
tion strengths exhibit substantial variation or uncertainty.

Keywords: net-effects matrix, community matrix, press perturba-
tions, species interaction strengths, complexity, networks.

Introduction

It is widely appreciated that the dynamics of complex eco-
systems are sensitive to species interaction strengths and
that the vast majority of interactions are weak (Wootton
and Emmerson 2005). The influence of this skewed distri-
bution of interaction strengths has seen much scrutiny in
the context of uncovering the effects of complexity on net-
work stability and species persistence in the face of acute
perturbations (May 1972; McCann 2000; Brose et al. 2006b;
Tang et al. 2014). In contrast, how interaction strengths
and network complexity influence the determinacy, and
thereby predictability, of species responses to chronic per-

turbations remains underexamined (Yodzis 2000; Ives and
Carpenter 2007; Novak et al. 2011; Barabás et al. 2014) yet
underlies many applications, ranging from fisheries man-
agement to climate change research (Sutherland et al. 2009;
Travis et al. 2014).
Whether it is in fact possible to predict the dynamics of

nature’s complex ecological systems or whether hypersen-
sitivity and context dependency will rule the day remains
unclear (Lawton 1999; Simberloff 2004; Doak et al. 2008;
Beckage et al. 2011; Godfray and May 2014; Petchey et al.
2015; Schindler and Hilborn 2015). Although some models
have successfully captured the dynamics of highly resolved
communities (Berlow et al. 2009; Boit et al. 2012), others
have shown predictive capacity to be severely limited by a
combination of network complexity (size and connectivity)
and the accuracy to which species interaction strengths are
known. These show that even moderate amounts of intrin-
sic variation or estimation error can routinely reverse whether
a species will increase or decrease in abundance after the
onset of a perturbation elsewhere in its network (Yodzis
1988, 2000; Abrams et al. 1996; Montoya et al. 2009; Novak
et al. 2011). Such poor qualitative predictability (or “direc-
tional indeterminacy”) stems from the many direct and in-
direct pathways along which perturbations propagate to de-
termine each species’ net response. Even low-complexity
networks can be highly indeterminate without accurate
knowledge of interaction strengths (Dambacher et al. 2002).
Given that (1) the number of possible indirect pathways in-
creases geometrically with network size (Borrett and Patten
2003), (2) indirect effects propagate rapidly (Menge 1997),
(3) empirical interaction strengths are associated with both
substantial natural variation and estimation uncertainty
(Berlow et al. 2004; Wootton and Emmerson 2005), and
(4) real ecological systems are much more complex than
current food web reconstructions reflect, predictive suc-
cess should be extremely difficult to achieve (Yodzis 2000;
Wootton 2002).
Here we challenge this notion by demonstrating the ex-

istence of a positive relationship between network complex-
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ity and the skew of the interaction strength distribution,
whose beneficial influence on the determinacy and conse-
quent predictability of food webs increases with network
size. Specifically, we show how the indeterminacy caused
by indirect effects declines with increasing network com-
plexity when universal allometric constraints associatedwith
species’ body sizes determine pairwise interaction strengths.
The higher prevalence of weak interactions and the increased
strength of strong interactions that results in complex
networks when interaction strengths are allometrically con-
strained preserve predictability even when pairwise interac-
tion strengths exhibit substantial variation.

Methods

We define a network’s determinacy, and thereby its predict-
ability, as the directional consistency by which species re-
spond to press perturbations of their community (Yodzis
1988). Net effects between species having high predictabil-
ity exhibit low directional sensitivity to variation in their
constituent interactions. Predictability thereby reflects the
ability to anticipate a species’ qualitative net response to a
press perturbation despite intrinsic variation or estimation
uncertainty in the pairwise direct interaction strengths of a
community.

Our approach to evaluating the predictability of net-
works of varying complexity combined the numerical meth-
ods of allometric trophic network models (Williams and
Martinez 2004) with the analytical efficiency and insights
afforded by community-matrix methods (Yodzis 1988;
Higashi and Nakajima 1995). In the following we describe
(1) how the community matrix may be used to infer species’
net effects on each other, (2) how we parameterized com-
munity matrices reflecting networks of varying complexity,
using allometric trophic network models, and (3) how we
quantified the predictability of these networks in the face
of interaction strength uncertainty. We then describe how
we used (4) randomization experiments and (5) a path-
partitioning analysis to assess themechanisms by which pre-
dictability is preserved in complex networks when interac-
tion strengths are allometrically constrained.

Community Matrix

Use of the community matrix (A) is well established in the
context of the diversity-stability debate (May 1972; Tang
et al. 2014). The community matrix is defined by the pair-
wise partial derivatives of the ith species’ growth rate with
respect to the biomass of species j (or “Jacobian matrix”),
typically evaluated at equilibrium biomass densities, B*:

Aij p
∂(dBi=dt)

∂Bj
j
B*

: ð1Þ

Each ijth element ofA reflects the first-order direct effect by
which a small increase in species j will affect the population
growth rate of species i, the sign and magnitude of which we
here refer to as a “direct interaction strength.” Representing
only the first nonzero term of a Taylor series approximation
to the total direct effect that species j has on species i (con-
tained within dBi=dt), the community matrix ignores all
higher-order (nonlinear) terms.
Net effects between two species in a network result from

the combined influence of direct and indirect effects. Our
use of the community matrix employs the fact that the
negative of the inverse of the community matrix (2A21,
henceforth the “net-effects matrix”) encapsulates the net re-
sponse of all species to independent press perturbations of
each species as these perturbations propagate through the
direct and indirect pathways connecting each species pair
(Yodzis 1988). Use of the net-effects matrix is predicated
on the assumption that perturbations are sufficiently small
or that the pairwise direct effects between species are suffi-
ciently linear near steady state to bewell approximated by the
community matrix (Bender et al. 1984; Yodzis 1988; Novak
et al. 2011). The sign structure of the net-effects matrix de-
scribes species i’s qualitative response (i.e., increase, decrease,
or neutral) to a chronic increase of species j’s growth rate.

Allometrically Constrained Interaction Strengths

Previous uses of community-matrix methods have assigned
pairwise interaction strengths to community matrices from
static distributions (Yodzis 1988; Montoya et al. 2009;
Novak et al. 2011) or have assumed that species equilibrium
abundances are directly governed by their body sizes (Tang
et al. 2014). Instead, we assumed that species’ interactions
strengths, and thereby also their equilibrial biomass densi-
ties, are governed by allometric scaling rules that relate spe-
cies’ body sizes to their metabolic, growth, and maximum
ingestion rates (Brown et al. 2004). We did so by using al-
lometric trophic network (ATN) models that extend the
bioenergetic consumer-resource model of Yodzis and Innes
(1992) to multispecies networks (Williams and Martinez
2004;Williams et al. 2007). ATNmodels have seen frequent
application in the context of understanding network stabil-
ity and persistence (Brose et al. 2006b). They have also seen
recent success in explaining the effects of species extinc-
tions (Berlow et al. 2009) and the seasonal dynamics of real
ecological communities (Boit et al. 2012).
Our use of ATN models entailed a 3-step process. We

first used the niche model to create networks of varying size
and connectance (Williams and Martinez 2000) and then
assigned body masses to all species on the basis of empirical
distributions of consumer-resource mass ratios (Brose et al.
2006a). Finally, we used a system of ordinary differential
equations to relate network structure and body masses to
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species dynamics in order to obtain equilibrium biomass
densities and the elements of a given network’s community
matrix.

The niche model requires only the specification of net-
work size (the number of species, S) and trophic connec-
tance (C p L=S2, the proportion of all possible feeding links
between species, including cannibalism), randomly assign-
ing each species a value and a feeding range along a 0–1
“niche axis.” Although not intended to represent only body
size, the niche axis is often interpreted as such because of the
dominant effect that body size has on food web structure
(Allesina 2011; Stouffer et al. 2011). Increasing connectance
increases the width of the feeding ranges and the resulting
generality of the consumer species. Those species whose
feeding range does not encompass the niche value of an-
other species are considered primary producers. We used
only networks with at least 10% of species as primary pro-
ducers and ensured that all species were connected in one
network, creating 5,000 networks with initial richness levels
of 10, 20, 30, 40, 50, or 60 species and initial connectance
levels of 0.05, 0.15, 0.25, or 0.35. Final richness and con-
nectance levels differed from these initial levels, depend-
ing on the number of species that became extinct during
simulations. We therefore report results by categorizing
networks into bins of varying size and connectance (e.g.,
connectance5 0:05).

Species body sizes were assigned on the basis of their tro-
phic level, which was calculated from network structure
alone (Levine 1980). Producers were set to a body mass of
1, meaning that our models most closely resemble pelagic
systems where primary producers have small body masses
and fast turnover rates relative to their consumers. Primary-
consumer body masses were assigned by taking a random
draw from lognormal empirical distributions of consumer-
resource bodymass ratios (log10 ðMC=MR)) for invertebrates
(mean: 0.65, SD: 1.52; Brose et al. 2006a). For secondary-
consumer body masses, we rounded trophic levels to the
nearest integer, subtracted 1, and took the product of that
many random draws from a lognormal empirical distribu-
tion for ectotherm vertebrate consumer-resource bodymass
ratios (mean: 2.73, SD: 1.60). Here the standard deviation
was divided by the square root of the number of draws to
prevent inflation of the sample standard deviation. The re-
sulting distributions of species body masses were reflective
of the wide range of variation seen in the real world (fig. A1;
apps. A–D and figs. A1, B1, C1, and D1 available online).

The system of ordinary differential equations governing
the dynamics of ATN models describe the growth rate of
species i’s biomass density (Bi) as

dBi

dt
p

Xn

jp1

xiyBiFji

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{resource gain

2
Xm

kp1

xk
y
ei

" #
BkFik

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{consumer loss

2 xiBi

z}|{metabolic loss

ð2aÞ

when it is a consumer and as

dBi

dt
p εxiBiGi

zfflfflffl}|fflfflffl{production gain

2
Xm

kp1

xk
y
ei

" #
BkFik

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{consumer loss

2 (12 ε)xiBi

zfflfflfflfflfflffl}|fflfflfflfflfflffl{metabolic loss

ð2bÞ

when it is a primary producer (see table 1 for a summary of
model parameters). Changes in the biomass density of a
consumer species i (eq. [2a]) thus reflect its energetic gains
from the consumption of n resources, minus its energetic
losses due to consumption by m consumers and its own
mass-specific metabolic rate, xi (i.e., respiration). Changes
in the biomass density of primary producers (eq. [2b]) are
similarly constrained, except that we assumed growth to fol-
low a logistic growth function,

Gi p
(12

P
cijBj)

K
, ð3Þ

with equal competition coefficients for all j producers (cijp1)
and a constant, system-wide carrying capacity (Kp106) for
all networks (Boit et al. 2012).
The function Fji represents the consumer’s multispecies

functional response and describes the fraction of i’s maxi-
mum rate of ingestion that is realized in the consumption
of resource j:

Fji p
qiB

q
j

Bq
0 1 BiB

q
0 1

Pn
l(jqiB

q
l

: ð4Þ

Here Fji depends not only on the biomass density of the focal
resource but also on the biomass densities of the consumer’s
other resources, in a manner that affects a diffusion of a gen-
eralist consumer’s resource-specific ingestion rates relative
to those of a specialist consumer. Consumers were assumed
to exhibit uniform resource preferences, qi p 1=n, for each
of their n resources, which results in consumers encounter-
ing and attacking resources in proportion to their biomass
density, Bj. For all consumer-resource pairs we assumed the
same consumer half-saturation density, B0p1,500 (Boit et al.

Table 1: Summary of allometric trophic network model parameters

Parameter Description

B Species-specific biomass density
x Species-specific metabolic rate
y Consumer maximum ingestion rate
e Assimilation efficiency
ε Producer carbon-use efficiency
c Competition between specific producers
K Carrying capacity
q Consumer preference for specific resources
B0 Half-saturation density
q Hill exponent
a Allometric normalization constant
M Species-specific bodymass dependent on trophic level
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2012) and set the Hill exponent to qp2 to affect a saturating
Type III–like functional response (Brose et al. 2006b). The
multispecies nature of the functional response also causes
an interaction modification (sensu Wootton 1994a; Kéfi
et al. 2012) in the form of an apparent mutualism between a
consumer’s resources (Abrams and Matsuda 1996). Appar-
ent mutualisms increase the dynamical connectance of a
community above its trophic connectance (app. B) and in-
crease theproportionofpositive interactionswithin the com-
munity matrix (Yodzis 2000).

Allometric constraints are incorporated into the ATN
frameworkthroughthescalingofprocess rates tospeciesbody
masses, Mi. Metabolic rates, xi, follow a negative-quarter-
power-law relationship, such that

xi p aiM20:25
i ð5Þ

(Brown et al. 2004). Following Brose et al. (2006b), we set the
allometric constant ai to 1 for all primary producers, 0.314
for all primary (invertebrate) consumers, and 0.88 for
all higher (ectotherm vertebrate) consumers. Metabolism-
dependent rates of consumption, production, and respira-
tion follow accordingly. The consumer maximum ingestion
rate, yp10 (Boit et al. 2012), is expressed per unit meta-
bolic rate, with e representing the assimilation efficiency of
herbivorous (ep0:45) or carnivorous (ep0:85) interac-
tions (Brose et al. 2006b). Producer production and respira-
tion are expressed as fractions of metabolism, with ε repre-
senting the fraction of metabolism allocated to growth (i.e.,
carbon-use efficiency, εp0:83) and 12 ε reflecting the frac-
tion lost to respiration (López-Urrutia et al. 2006). With the
body masses of all primary producers set to 1, the meta-
bolic rate of producers defines the timescale of the system’s
dynamics.

Our numerical integration of equations (2a) and (2b) for
networks of varying complexity used a Runge-Kutta method
with adaptive step sizes implemented in Matlab (rel. 2012b;
MathWorks). Initial starting biomass densities were set to
1 for all species. If at least 80% of species persisted after
3,000 time steps (biomass densities 1 10230; Brose et al.
2006b), “extinct” species were removed and numerical inte-
gration was repeated until all species persisted. The simula-
tion data underlying all our analyses are available from the
Dryad Digital Repository: http://dx.doi.org/10.5061/dryad
.m27p0 (Iles and Novak 2016). We report our results using
final richness and connectance. Equilibrium biomass densi-
ties (average biomass densities over the final 200 time steps)
were then used to specify the elements of the community
matrix and evaluate the network’s predictability.

Predictability as Directional Determinacy

Predictability, as defined by directional determinacy,
reflects the ability to predict the direction of species’ “true”

net responses to press perturbations, given intrinsic varia-
tion or estimation uncertainty associated with their direct
interaction strengths. Thus, having specified a network’s
community matrix (A) on the basis of the ATN framework,
we quantified predictability by the proportion of “true” net
responses in 2A21 that matched the sign structure of a net-
work’s net-effects matrix after varying levels of uncertainty
were introduced to the elements of A (Novak et al. 2011).
To introduce uncertainty we randomly drew new Aij values
with equal probability from uniform distributions either
above or below their true (no-error) value. That is, the
added uncertainty resulted in either an overestimate, Unif
(Aij,Aij # E)), or an underestimate, Unif (Aij=E,Aij), of each
Aij element, with E representing the maximum possible
proportional uncertainty, which varied from 1 (no error)
to 10 (an order-of-magnitude error). Themaximum possible
error at each E level was therefore proportional to the mag-
nitude of the true interaction strength. Equivalent results
were obtained when we assumed an appropriately scaled
and centered lognormal error distribution, and they were
predictably affected by altering the assumed proportionality
function between uncertainty and interaction strength mag-
nitude (app. C). Uncertainty was introduced either to all in-
teraction strengths or to all except the strongest 5% of inter-
actions to relate to a possible empirical situation whereby the
strongest interactions are quantified most accurately. For
each network and magnitude of uncertainty, we calculated
the average proportion of species net responses that matched
the signs of the “true” net responses over 1,000 random
iterations.

Randomization Experiments

We next used randomization experiments (Tang et al.
2014) to disentangle the effects of network complexity and
interaction strength distributions on predictability. These
numerical experiments held the structure of a target net-
work constant but altered its distribution of interaction
strengths by drawing new values from source networks of
contrasting complexity before reevaluating predictability.
We used four target network categories, distinguished by
size (S ! 20 or S 1 50) and connectance (C ! 0:1 or C 1
0:3). Source distributions of direct interaction strengths
were obtained by pooling community-matrix elements from
networks of 24 possible size-connectance combinations
(S p 5–10, 15–20, 25–30, 35–40, 45–50, or 55–60 and C !
0:1 or C p 0:1–0:2, 0.2–0.3, or 0.3–0.4). Randomization
preserved each target network’s topology, sign structure, in-
teraction types (i.e., consumer effects, resource effects, com-
petition between primary producers, apparent mutualisms
between resources, and intraspecific effects), and the paired
natureof reciprocalconsumer-resource interactionstrengths,
thereby altering only theoverall strong-to-weakdistribution
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of interaction strength magnitudes within the community
matrices of these target networks as resulting from the
ATN simulations. We reassessed the predictability of the
target networks assuming an order-of-magnitude level of
maximum uncertainty for all interactions (E p 10).

Path Partitioning

Finally, we used a path-partitioning approach to investigate
the mechanism by which complexity and the distribution of
interaction strengths affect predictability. This analysis al-
lowed us to discern the additive influence of indirect path-
ways of successively longer lengths on the sign of the final
net effect between species by decomposing the net-effects
matrix (2A21) with a matrix series expansion:

2A21 p
X∞

lp0

DlR ð6Þ

(Higashi and Nakajima 1995). Here l is the path length, ma-
trix D is composed of scaled elements of A (Dij p 2Aij=Aii

andDii p 0), and R is a diagonal matrix with Rii p2 1=Ajj.
Our analysis quantified the relative influence of indirect ef-
fects of increasingly longer path lengths by the proportion of
matrix elements in2A21 whose signmatched the sign of the
corresponding elements in the summed matrix series over
successively increasing maximum path lengths (i.e., from
l p 1, which includes the contribution of only direct effects,
to l p 5, which includes direct and indirect effects up to a
path length of 5).

Results

In contrast to equivalent analyses of networks populated by
static, arbitrarily generated interaction strengths (Yodzis
1988; Novak et al. 2011), we find that network predictability
increases with higher network connectance (fig. 1A–1C;
compare across lines within each subplot). Thus, while a
network’s mean predictability declines with increasing net-
work size (fig. 1A–1C; compare across subplots) and inter-
action strength uncertainty (fig. 1A–1C; decline of all lines
along the X-axis), just as seen in previous analyses (Novak
et al. 2011), the rate of decline not only is slower in allome-
trically constrained networks but also converges on a mini-
mum rate of predictive success that remains better than the
50% (the equivalent of a coin flip) seen in previous analyses
(Yodzis 1988; Dambacher et al. 2002; Novak et al. 2011).
The positive effect of connectance on predictability is greater
in large networks than it is in small networks, particularly
when as few as 5% of the strongest interactions are accu-
rately estimated, all others having an order-of-magnitude
level of uncertainty (fig. 1D–1F; compare the spread be-

tween lines across subplots). Complexity thereby increases
predictability. The influence of complexity on predictability
observed in our analyses remains qualitatively unchanged
by altering the proportionality function relating interaction
strength magnitudes to their uncertainty (app. C). Finally,
predictability is related to the overall magnitude of species
responses (det (A)) but is not explained by variation in
asymptotic stability (lmax) or matrix condition number
(jlmax=lminj; app. D).
The key to why the net effects of more complex networks

show improved predictability when pairwise interaction
strengths are allometrically constrained lies in how the dis-
tribution of interaction strengths changes with network size
and connectance. As seen in previous models and in empir-
ical studies (Emmerson and Yearsley 2004; Bascompte et al.
2005; Wootton and Emmerson 2005; Banašek-Richter et al.
2009; O’Gorman et al. 2012), the distribution of interaction
strengths in our analyses is highly skewed toward weak in-
teractions (fig. 2). Across the empirically documented range
of variation in complexity we explored in our models, this
skew becomes more extreme as complexity increases, with
the median interaction strength becoming several orders of
magnitude weaker (fig. 2) relative to the maximum interac-
tion strengths (fig. 2; change in the span of the bars below
each plot). All types of interactions exhibit this tendency
with increasing network size as the total available energy-
biomass of the system becomes nonuniformly distributed
among more species, including the strengths of consumer
effects on their resources, resource effects on their consum-
ers, competition between primary producers, apparent mu-
tualisms between resources, and intraspecific effects (fig. 2,
left). Thus, as network size increases, the strongest interac-
tions become relatively stronger while weak interactions be-
come relatively weaker and more prevalent.
The influence of connectance occurs in two ways. Similar

to network size, its first effect is to nonuniformly weaken
consumer-resource interaction strengths as the energetic de-
mands and the consequent top-down effects of increasingly
generalist consumers are spread more widely across their
resources (fig. 2, right). This effect is limited to consumer-
resource interactions and intraspecific effects, since higher
connectance results in stronger producer competition and
apparent mutualisms by reducing average biomass densi-
ties and increasing the fraction of resource species sharing
the same consumers. Increased connectance thereby also
reduces the degree of separation between species, by both
addition of direct feeding links and proliferation of direct
effects between producers and between resource species
sharing consumers.
Our randomization experiments show that network pre-

dictability increases when a target network’s interaction
strength values are redrawn from more complex source
networks (fig. 3). This positive influence of source network
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complexity on predictability occurs for all target network
size-connectance combinations (fig. 3, all panels) but is
most evident in highly connected target networks (fig. 3A,
3B). We hypothesize that this occurs as a consequence of
the relative influence of direct and indirect effects. The
strength of indirect effects—corresponding to the product
of the direct effects along the length of an indirect path-
way—diminishes when the source interaction strength dis-
tribution is highly skewed. For an indirect effect to be
strong, each interaction along the pathway of the indirect
effect also must be strong. With a skewed distribution of
interaction strengths, the likelihood of this occurring di-
minishes with the length of the indirect pathway and di-
minishes faster as the distribution of interaction strengths
becomes more skewed. In complex networks, a high preva-
lence of weak interactions thereby dampens the strength of
more counteracting indirect effects, whose opposing signs
and similar magnitudes would otherwise generate indeter-
minacy in the direction of the net effects. Furthermore, with
species in highly connected target networks being more

likely to be directly connected, there are more direct effects
to outweigh the indirect effects. The rarity and increased
strength of the strongest interactions mean that relatively
fewer links are increasingly responsible for driving most
of the perturbation response. As a result, accurately esti-
mating even a small percentage of the strongest interactions
has a large influence on predictability in more complex net-
works (fig. 1D–1F). Complexity thereby decreases the sen-
sitivity of qualitative predictions to estimation uncertainty
by (1) decreasing the degree of separation between species
and (2) decreasing the relative influence of most indirect ef-
fects while increasing the relative influence of the strongest
interactions. Thus, complexity decreases the sensitivity of
ecosystems to variation in interaction strengths and in-
creases the consistency with which species affect each
other’s populations.
The path-partitioning analysis that decomposed the rel-

ative influence that pathways of increasing length have on
the sign of the net effect between each pair of species sup-
ports this hypothesized mechanism. This analysis shows
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tion of net effects with the correct sign), declines with increasing network size and the uncertainty with which species interaction strengths
are estimated but increases with network connectance when interaction strengths are allometrically constrained. The positive effect of
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that, for all network sizes, a greater proportion of the net ef-
fects between species match the sign of their direct effects as
connectance increases (fig. 4; compare lines within subplots
at a path length of 1). That is, while more than 80% of net
effects are qualitatively determined by pathways of length 5
or less, the benefit of considering the influence of pathways
longer than a single link diminishes with network connec-
tance and increases only slightly with network size. Thus, in
more complex networks, species are more likely to be con-

nected directly and the effects of these direct interactions
are more likely to dominate the sign of the net effect that
species have on each other.

Discussion

Our analyses extend previous insights into the effects of com-
plexity and the skewed distribution of interaction strengths
in determining the response of complex ecological systems
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Figure 2: Effects of network complexity on the distribution of interaction strengths. Kernel densities evidence how the distributions of
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to pulse perturbations (Berlow 1999; McCann 2000; Neutel
2002) to the context of chronic, press perturbations. Al-
though pairs of strongly interacting species are what drive
a system’s dynamic response to press perturbations, it is
the array of weak interactions that determine how far and
how strongly perturbations will propagate. By increasing
the relative strength of the strong interactions as well as
the prevalence of weak interactions that attenuate the prop-
agation of indirect effects, network complexity and allome-
tric constraintsmake species net responsesmore consistently
tied to the direct effects of the strongest interactions. Our
results bear several implications for (1) how complex ecolog-
ical systems are represented in attempts to understand and
predict species responses to chronic perturbations, (2) ex-
plaining why many complex ecosystems in nature do exhibit
consistent responses to perturbations of their constituent
species, and (3) explaining why many communities do not
exhibit a greater influence of indirect effects despite their
large size.

The foremost implication of our results is that the com-
mon practice of simplifying the complexity of ecological
systems for the sake of empirical, computational, or ana-
lytic tractability—either by aggregating similar species or
by ignoring rare species and weak interactions—may unex-
pectedly be limiting predictive success, altering not only
network structure but also the relative representation of
weak and strong interactions. To improve our ability to
make predictions, we must embrace the complex nature of
ecosystems. Although this will remain challenging, our
results do suggest optimism, in that parameterizing more
complex models to produce qualitatively correct predic-
tions should be easier than previously expected: accurate
empirical estimates of only a small fraction of the strongest
interactions should improve predictive success, despite
high uncertainty in the strengths of the remaining interac-
tions. This is in contrast to previous analyses of networks
populated with static interaction strengths, in which re-
moving the error from the strongest 50% of interactions
did not substantially improve predictability when all other
interactions were estimated poorly (Novak et al. 2011).
Methods to identify such “keystone interactions” already
exist (Aufderheide et al. 2013; Barabás et al. 2014) and are
likely to gain further traction as approaches for inferring in-
teraction strengths on the basis of allometric principles see
independent validation (Berlow et al. 2004, 2009; Wootton
and Emmerson 2005; Rall et al. 2012).

Our results also help to explain the many consistent ways
that real ecosystems respond to chronic perturbations. That
is, although ecologists have long emphasized the idiosyn-
cratic, nonlinear, and even chaotic aspects of species dy-
namics in nature andmodels, many net effects between spe-
cies in complex ecosystems exhibit remarkable insensitivity
to interaction strength–altering changes in environmental

conditions. For example, the pathways of net effects between
sea otters and kelp remain qualitatively consistent across
large latitudinal gradients in community composition and
abiotic conditions that undoubtedly modify and introduce
variation in interaction strengths (Estes et al. 2011). Such de-
terminacy in a complex kelp system would not be expected if
the structural complexity of ecological networks alone gov-
erns ecosystem dynamics.
Empirical distributions of species interaction strengths

are known to be skewed (Wootton and Emmerson 2005)
and have recently been shown to exhibit heavy tails, similar
to the distributions emerging in our simulations (O’Gorman
et al. 2012). The extent of this skew and whether it becomes
more extreme with network complexity, as seen in our sim-
ulations, have not been empirically assessed. Our analyses
suggest that a useful proxy may be the observed importance
of direct and indirect effects in experiments. An analysis of
manipulative experiments in 18 marine rocky intertidal
networks found that indirect effects accounted for 22%–
68% of the change in community structure (Menge 1995),
which broadly encompasses the range of our results (fig. 4).
Furthermore, although the number of indirect effects in-
creasedwith the network size of the species involved in these
experiments, their influence on species responses did not
(Menge 1995). In light of our results, this suggests that the
distribution of interaction strengths became more skewed
with network size to counteract the indeterminacy caused
by the higher number of indirect effects.
Although our results show a dramatic improvement over

previous investigations of predictability in complex ecolog-
ical networks (Yodzis 2000; Novak et al. 2011), the average
predictability of large, low-connectance networks is still
quite poor (slightly better than a coin flip). This implies that
the relevance of our results may in fact be rather limited, be-
cause connectance is thought to decline with increasing
network size in empirical food webs (Ings et al. 2009).
Our results also suggest, however, that the lower connect-
ance observed in large empirical networks may be an arti-
fact stemming from the difficultly of observing weak inter-
actions, whose prevalence increases in complex networks. If
this is correct, then more effort per species would be re-
quired to maintain consistent link detectability as network
size increases. More empirical work on link detectability
across networks of varying size is needed to shed light on
this issue.
Our analyses domake several assumptions whose empir-

ical validity requires further scrutiny. First, not all ecologi-
cal systems will have their dynamics determined by species
interactions alone (Mutshinda et al. 2009). Second, addi-
tional forms of species interactions not mediated by allo-
metrically constrained trophic relationships are likely also
important in determining species dynamics (Kéfi et al.
2012). Third, even within communities whose interactions
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are allometrically constrained as a general rule, it may be the
outlier species, such as sea otters, whose metabolic rate far
exceeds that expected for their body mass, that are most crit-
ical to dynamics. Finally, the analytical efficiency and in-
sights that are afforded by our use of the community matrix
come at the expense of being limited to first-order approx-
imations of species’ actual dynamic responses. That is, sim-
ilar to studies of asymptotic stability in the context of acute
perturbations, we too assume that perturbation magnitudes
are sufficiently small, or that species responses are suffi-
ciently linear, to have a community’s dynamics be well ap-
proximated by pairwise linear effects. Our focus on qual-
itative, directional responses alleviates the severity of this
assumption, but how small is sufficiently small remains an
open empirical question. Justification is suggested by the
success of previous studies using allometric trophic network
models to predict the net strengths of species effects after
outright species extinctions (Berlow et al. 2009) as well as
to describe the seasonally forced dynamics of focal empiri-
cal systems (Boit et al. 2012).

Many of the chronic perturbations faced by ecological
systems are a consequence of, and of direct relevance to,
society’s actions. If the interaction strength distributions
of real ecosystems do in fact become dominated by weak in-
teractions, with relatively few key strong interactions, as
complexity increases, then our capacity to predict andman-
age the repercussions of these actions may be better than
previously thought, once complexity is itself embraced. Con-
versely, the ongoing biodiversity loss that is simplifying
nature’s complexity (Butchart et al. 2010) should also be re-
ducing our ability to predict its dynamics. Further effort
extending beyond the consequences of biodiversity loss
for diversity-stability and diversity-function relationships
is needed to continue characterizing our capacity to under-
stand these effects.
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Appendix A from A. C. Iles and M. Novak, “Complexity Increases
Predictability in Allometrically Constrained Food Webs”
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Figure A1: Probability density functions (pdf ) of consumer body mass distributions in the allometric trophic network models by
trophic level (TL).
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Appendix B from A. C. Iles and M. Novak, “Complexity Increases
Predictability in Allometrically Constrained Food Webs”
(Am. Nat., vol. 188, no. 1, p. 87)

Trophic versus Dynamical Connectance
The measure of connectance we report is trophic connectance, or the proportion of all possible direct feeding links (L)
between species (S), C p L=S2. Calculated from the feeding matrix of who-eats-whom, trophic connectance includes
only direct feeding interactions of consumers on their resources, including cannibalistic links. Increasing the connectance
of a food web results not only in a greater link density but also in a greater proportion of generalist versus specialist
consumers. The multispecies functional response describes how the realized fraction of a generalist consumer’s maximum
ingestion rate is diffused across its resources. The ingestion rate of each resource species depends not only on the biomass
density of the focal resource but also on the biomass densities of a generalist consumer’s other resources. Thus, the
multispecies functional response causes an interaction modification (Wootton 1994b; Kéfi et al. 2012), in the form of a
weak apparent mutualism in which the presence of an alternate prey modifies the strength of predation for the other prey
(Abrams and Matsuda 1996; Yodzis 2000).

Although conceptually apparent mutualisms are an interaction modification, they appear as direct effects in the
community matrix because they do not require a change in the biomass density of a third, intermediate species. That is, by
the mathematical definition of the community matrix (see “Community Matrix”), its elements represent the direct effect of
species j on species i, with all other species abundances held constant. In the case of apparent mutualism, the intermediate
species is the consumer that the prey species share in common. Competition between basal producers also appears as a
direct effect between producers in the community matrix, even though, conceptually, competition is an indirect effect. In
this case, the intermediate “species” is the system’s overall carrying capacity, which is shared by all producers. Similarly,
intraspecific effects do not depend on an intermediate species. Thus, apparent mutualism, producer competition, and
intraspecific effects appear as direct effects in the community matrix.

The dynamical connectance of a network is a measure of connectance that includes all effects as encapsulated by the
nonzero elements of the community matrix. These include not only consumer-resource effects but also intraspecific
effects, apparent mutualisms, and competition between producers. Dynamical connectance thus reflects both the direct
links between species (as reflected in trophic connectance) and any other effects that do not require a numerical response
from an intermediate species. We use the term “dynamical” connectance because it is the community matrix that
encapsulates the dynamical properties of the system. As opposed to trophic connectance, dynamical connectance reflects
the actual pathways along which perturbations propagate. In linear Lotka-Volterra models, dynamical connectance and
trophic connectance are equivalent. However, in multispecies allometric trophic network models, as trophic connectance
increases consumers feed on wider range of resources, and the resulting dynamical connectance increases even faster
(fig. B1).
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Figure B1: Relationship between each network’s trophic connectance and its effective dynamical connectance.
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Appendix C from A. C. Iles and M. Novak, “Complexity Increases
Predictability in Allometrically Constrained Food Webs”
(Am. Nat., vol. 188, no. 1, p. 87)

Choosing an Error Distribution for Evaluating Directional Sensitivity
Here we compare our results based on a uniform distribution for the error introduced to species interaction strengths
(presented in the main text) to results obtained with a lognormal distribution of error. Both constrain an interaction’s
magnitude in such a way as to not alter its sign. The mean of the lognormal error distribution is centered on the interaction
strength’s true magnitude. Three functions relating the magnitude of an interaction’s uncertainty to its mean were assessed,
as the existing empirical relationship between an estimate’s mean and variance is as yet unknown (but see Berlow et al.
1999): (1) a constant proportional error, F, that was independent of an interaction strength’s magnitude, (2) an increasing
proportional error that scaled positively with an interaction’s magnitude, and (3) a decreasing proportional error that scaled
negatively with an interaction’s magnitude. For case 1, we specified the standard deviation of the lognormal distribution
(j) to affect a magnitude of proportional uncertainty that corresponded to our results presented in the main text (table C1).
For each standard deviation value, the corresponding uniform distribution of the main text captured 99% of the lognormal
distribution. For case 2, the smallest nonzero-magnitude log10 interaction strength was given no error (j p 0, F p 1),
while the largest was given an order-of-magnitude error (j p 0:895, F p 10). The remaining log10 interaction strengths
were assigned a standard deviation along this range, in proportion to their magnitude. The same procedure was used in
case 3, except that the largest interaction strength was assigned no error (j p 0, F p 1), while the smallest interaction
strength received an order-of-magnitude error (j p 0:895, F p 10). These analyses show that a lognormal error
distribution produces results that are qualitatively similar to the uniform error distribution (fig. C1A, C1B) yet also
highlight how important the scaling relationship between estimation uncertainty and interaction strength magnitude is for
evaluating directional insensitivity (fig. C1B–C1D). If stronger interaction strengths exhibit less variation, as some
empirical evidence suggests (Berlow 1999), or are estimated with less uncertainty (fig. C1D), then net effects should be
highly insensitive to any error in the remaining weak interactions.
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Figure C1: A, B, Decline in directional insensitivity, or mean proportion of net effects with the correct sign, when all interactions have
an equal likelihood of a uniform error distribution (A) or a lognormal error distribution with corresponding levels of uncertainty (B).
C, D, Lognormal error distributions for which maximum proportional uncertainty is positively (C ) or negatively (D) related to the true
magnitude of the log10 interaction strength. SIS p species interaction strength.
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Table C1: Standard deviations of the lognormal distribution of inter-
action strength uncertainties and corresponding F values of the uniform
error distribution

Proportional error, F, of the
uniform error distribution

Standard deviation, j, of the
lognormal distribution

1 0
1.01 .0050
1.05 .0190
1.10 .0371
1.15 .0543
1.25 .0867
1.50 .1576
1.75 .2174
2 .2699
3 .4268
4 .5381
5 .6284

10 .8950
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Appendix D from A. C. Iles and M. Novak, “Complexity Increases
Predictability in Allometrically Constrained Food Webs”
(Am. Nat., vol. 188, no. 1, p. 87)

Predictability Related to Stability, Matrix Condition Number, and Matrix
Determinant
Assessing asymptotic stability by the maximum eigenvalue (lmax) shows no relationship with predictability, as defined by
directional determinacy, or the sensitivity of qualitative predictions to an order-of-magnitude (F p 10) variation in
interaction strength estimates (fig. D1A, D1D). The matrix condition number (jlmax=lminj) is often used to quantify the
sensitivity of a matrix to inversion. The networks of our analyses were all well conditioned and evidence no relationship
between condition number and predictability (fig. D1B, D1E ). The determinant of the community matrix, det (A), scales
the magnitudes of 2A21 and reveals a positive relationship between predictability and the overall magnitude of species
responses. Like network predictability, the matrix determinant is sensitive to network size and connectivity (fig. D1C,
D1F ).
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Figure D1: Relationship between network predictability (as measured by directional determinacy) and asymptotic stability
(log10 ðjlmaxj) (A, D), matrix condition number (log10 ðjlmax=lminj) (B, E ), and the matrix determinant (log10 (det (A); C, F ) for networks
of varying size (A–C ) and connectance (D–F ). Predictability reflects the mean proportion of net effects with the correct sign after up to
an order-of-magnitude error is introduced to all interactions (F p 10).
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