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Abstract: Intraspecific variation is increasingly recognized as an important factor in ecological interactions that can
exceed the role of interspecific variation. Few studies, however, have examined how variation in intra- and inter-
specific resource use affect trophic interactions over time within a seasonally-dynamic food web. We compared
diets with respect to predator body size and predator species identity over 3 seasons by collecting stomach contents
from 2028 Reticulate Sculpin (Cottus perplexus), 479 Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii), and
107 Pacific Giant Salamanders (Dicamptodon tenebrosus) in western Oregon streams. In each season, predator
body size was strongly associated with dietary composition and positively related to taxonomic breadth and the
size of individual prey. Intra- and interspecific diet variation changed substantially across seasons, withmuch greater
interspecific variation in spring than in summer and autumn. Interspecific differences in foragingmode (e.g., benthic
vs drift feeding) were associated with predator-specific responses to a seasonal pulse in the availability of terrestrial
thrip larvae (Thysanoptera) and contributed to temporal variation in trophic niche differentiation. These findings
show that the relative magnitudes of intra- and interspecific diet differentiation can change over time in systems that
receive seasonal resource pulses. Our results highlight the dynamic nature of food webs and the need to incorporate
sampling over relevant temporal scales to understand species interactions.
Key words: temporal diet variation, intraspecific, predator–prey interactions, food webs, resource pulses, body size,
streams

The relative rolesof intraspecific and interspecificnichevar-
iation in shaping the structure and dynamics of communi-
ties remains unclear (May and MacArthur 1972, Schoener
1974, Lichstein et al. 2007, Violle et al. 2012, Hart et al. 2016).
Ecologists have largely studied interacting populations at
the species level, often ignoring the role of intraspecific var-
iation (Abrams and Ginzburg 2000, Bolnick et al. 2011, No-
vak et al. 2016). However, individuals within species often
differ fromone another in ecologically-meaningful ways, in-
cluding prey preferences (Estes et al. 2003), microhabitat use
(Schlosser 1987), vulnerability to predation (Kusano 1981),
and competitive ability (Svanbäck and Bolnick 2007). For in-
stance, phenotypic changes that occur throughout ontogeny
(e.g., body size, physiology, behavior) often alter the types
and strengths of interactions in which individuals partici-
pate (Polis 1984, Bolnick et al. 2003, 2011). Indeed, recent
empirical studies have demonstrated that intraspecific var-

iation can influence community and ecosystem processes
as much as, or even more than, interspecific variation (Des
Roches et al. 2018). Thus, emphasis on understanding the
mechanisms that drive variation within and among species
has been renewed.

A focal point of research on intra- and interspecific var-
iation is their role in species coexistence (Schoener 1974, den
Boer 1986, Lichstein et al. 2007, Miller and Rudolf 2011,
Nakazawa 2015, Bassar et al. 2017). According to the com-
petitive exclusion principle, species cannot stably coexist
if they occupy the same ecological niche because only the
differential use of resources permits ecologically-similar
species to coexist (Gause 1934, Hutchinson 1957, Chesson
2000). Niche differentiation can be achieved in 3 basic ways:
1) specialization on a distinct set of resources (MacArthur
and Levins 1967, Chesson 2000), 2) differential use of re-
sources in space (May and Hassell 1981), or 3) differential
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use of resources in time (Armstrong and McGehee 1980,
Chesson 1985). Recent studies have demonstrated the im-
portance of niche differentiation for community dynamics
and species coexistence (Hughes et al. 2008, Clark 2010,
Jung et al. 2010, Messier et al. 2010, Bolnick et al. 2011,
Pruitt and Ferrari 2011, Violle et al. 2012), yet consensus
on the underlying mechanisms remains elusive. Some the-
ory suggests that intraspecific variation should promote
coexistence (Clark et al. 2003, Hubbell 2005, Fridley et al.
2007, Lichstein et al. 2007), whereas other theory suggests
that intraspecific variation is more likely to hinder coexis-
tence (Taper and Case 1985, Hart et al. 2016). Studies that
quantify intra- and interspecific variation in both time and
space will improve our understanding of species coexistence
and its underlying mechanisms.

Researchers are increasingly quantifying intra- and in-
terspecific niche variation, especially variation in resource
use (Araújo et al. 2007, Semmens et al. 2009, Coblentz et al.
2017), yet few studies have considered how the 2 forms
of niche variation change in relative magnitude over time.
Failure to consider time scales may bias inferences regard-
ing the frequency of diet variation within and among spe-
cies, especially in temporally-variable environments (Wood-
ward et al. 2010, Novak and Tinker 2015). Many aquatic
communities experience seasonal changes in community
structure, primary production, nutrient dynamics, hydrology,
and allochthonous inputs, which often result in temporally-
dynamic predator–prey interactions (Closs and Lake 1994,
Gasith and Resh 1999, Baxter et al. 2005, Power et al. 2008,
Peralta-Maraver et al. 2017, Heng et al. 2018). For instance,
seasonal inputs of terrestrial arthropods account for a large
portion of available prey for stream predators and can alter
foraging habits and diet (Wipfli 1997, Nakano et al. 1999b,
Kawaguchi and Nakano 2001, Romero et al. 2005, Li et al.
2016). The response of recipient consumers to resource
pulses, however, probably varies with species identity and
ecological traits such as body size (Yang et al. 2010), leading
to changes in the relative magnitudes of intra- vs interspe-
cific diet variation over time.

In this study, we assessed seasonal changes in the inter-
specific (i.e., taxonomic identity) and intraspecific (i.e., body
size) diet variation of a stream predator guild. We studied
3 generalist predators that co-occur in forested streams
throughout western Oregon: Reticulate Sculpin (Cottus
perplexus), Coastal Cutthroat Trout (Oncorhynchus clarkii
clarkii), and Pacific Giant Salamanders (Dicamptodon te-
nebrosus). Reticulate Sculpin are small, benthic fish that pri-
marily consume benthic macroinvertebrates (Bond 1963,
Petrosky and Waters 1975, Wydoski and Whitney 1979,
Scott and Crossman 1998, Preston et al. 2017). As aquatic
larvae, Pacific Giant Salamanders are also benthic but are
less specialized predators that consume benthic macroin-
vertebrates, terrestrial arthropods, and stream-dwelling ver-
tebrates (Kelsey 1995, Cudmore and Bury 2014). In contrast
to sculpin and salamanders,CutthroatTrout are active swim-

mers that feed on terrestrial and aquatic prey both at the wa-
ter surface and in the benthos (Chapman and Bjornn 1969,
Romero et al. 2005, Li et al. 2016).

Given thedifferences in foraging strategies amongour fo-
cal predators and the inherent seasonality of mediterranean-
climate streams (Gasith and Resh 1999), we hypothesized
that the relative magnitudes of intra- and interspecific diet
variation would change over time. We addressed this hy-
pothesis by analyzing predator stomach contents with re-
spect topredatorbody sizeandpredator species identityover
3 seasons. Our results show that associations between diet
and both predator body size and predator species identity
vary with season. These findings demonstrate the impor-
tance of considering both forms of niche variation across
time for understanding how trophic interactions influence
community dynamics.

METHODS
Data collection

We surveyed 3 stream reaches in each of Soap, Oak, and
Berry Creeks (9 total sites) in Oregon State University’s
McDonald-Dunn Research Forest northwest of Corvallis,
Oregon (44.638 N, 123.292 W). The 3 study streams were
∼1 to 3 m wide at base flow, flowed through mixed decid-
uous–coniferous forests into higher order tributaries of
the Willamette River, and supported a diverse assemblage
of aquatic macroinvertebrates (>325 species; Anderson and
Hansen 1987). Each reach was ∼45 m long and contained
a combination of pool and riffle habitats (typically 2–3 of
each habitat type).

To collect stomach contents, we conducted electro-
fishing surveys during the d (0900–1700) over roughly 2 wk
in each summer (June and July 2015), autumn (September
2015), and spring (April 2016). During each survey, a crew
of 4 researchers captured predators with a single pass of a
backpack electroshocker (Smith-Root LR20B; Vancouver,
Washington), a block net (1.0 ! 1.0 m), and 2 dip nets
(0.30 ! 0.25 m). Captured Reticulate Sculpin, Coastal Cut-
throat Trout, and Pacific Giant Salamanders were anesthe-
tizedwithAQUI-S® (LowerHutt, NewZealand) (Silbernagel
and Yochem 2016), measured for total length, lavaged non-
lethally to collect stomach contents, and released back into
the stream following a recovery period in aerated streamwa-
ter. Most individuals were lavaged with a 60-cc syringe and
a blunt 18-gauge needle, but individuals >100 mm were
lavaged with a small straw (2.5 mm in diameter) attached
to a 500-mL bottle of stream water. We did not lavage indi-
viduals of any species smaller than ∼25 mm. We preserved
stomach contents in 70% ethanol and identified them in the
laboratory with a dissecting microscope (8! to 35! mag-
nification) to the lowest possible taxonomic level (usually
family) according to Merritt et al. (2008). Total lengths
of whole, intact prey items were measured (to the near-
est 0.5 mm) to analyze associations between prey size and
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predator species identity, predator body size, and season.
Additional details about study sites and data collection are
provided in Preston et al. (2018, 2019).

Data analyses
To examine the association between diet and predator

body size, we subdivided each predator species into size
classes based on the distribution of total lengths observed
across all seasons. We assigned sculpin and trout to small
(<25th percentile), medium (25th–75th percentile), and large
(>75th percentile) size classes. The sample size of salaman-
derswas relatively low, soweassigned salamanders into 2 size
classes: small (<50th percentile) and large (>50th percentile).

We first quantified overall and seasonal dietary niche
breadth at both the species and size-class levels with Lev-
ins’ (1968) standardized measure (Hurlbert 1978),
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where pijis the proportion of prey type i in the stomachs of
predator group j, and n is the total number of prey items
consumed by predator group j. Standardized niche breadth
values range from 0 (highly specialized) to 1 (highly gener-
alized).We used the lowest possible taxonomic level of prey
identification (as suggested by Greene and Jaksić 1983) and
treated different prey life stages (i.e., larval, pupal, adult)
as distinct prey types. We estimated niche breadth means
and standard errors with non-parametric bootstrapping
(1000 draws of 20 prey items) to account for differences in
sample sizes among seasons and predator groups.

Wethencalculatedproportionaldiet composition ineach
season by dividing the total number of a given prey group
found in the stomach contents of a given species (or size
class) by the total number of prey items found in the stom-
ach contents of that species (or size class). To reduce com-
plexity instatistical analysesofdiet composition,wegrouped
the prey into 7 categories: Diptera larvae (true flies), Ephem-
eroptera larvae (mayflies), Trichoptera larvae (caddisflies),
aquatic snails ( Juga sp.), emergent adult insects (i.e., aquatic
insects that had emerged from the stream), terrestrial prey
(i.e., organisms with no aquatic life stage), and other. The
other category accounted for<5%of total prey items.We es-
timated prey counts rather than prey biomass because our
goal was to examine differences in diet composition rather
than energetic contributions of prey (Hyslop 1980, Pres-
tonet al. 2017). Highly-digested or otherwise unidentifiable
prey items were not counted.

We used Bayesian multivariate generalized linear mixed
effects models to examine the relationships between the
7 dietary groups and predator body size, predator species, and
season. To account for the potential repeatedmeasurement
of diets from the same predator individuals at a site, we in-
cluded random effects of stream reach within stream and of

stream identity. We used a zero-inflated Poisson distribu-
tion to model the multivariate prey count data for the 7 prey
groups. The multivariate models included fixed effects of
predator body size (continuous variable), predator species
(3 categories), and season (3 categories). We used the devi-
ance information criterion (DIC) to compare a model with a
3-way interaction between the fixed effects, a model with all
possible 2-way interactions, and nested models that dropped
each of the 2-way interactions separately (6 total models).
The 2-way interactions tested whether the relationships be-
tween prey identity and body size differed across seasons,
and whether the relationship with body size differed across
predator species. Bayesian mixed effects models were im-
plemented with the MCMCglmm package in R (version
3.5.2; R Project for Statistical Computing, Vienna, Austria)
with the default priors with 40,000 iterations, a burn-in pe-
riod of 15,000, and a thinning factor of 100 to minimize auto-
correlation (Hadfield 2019).

To examine the factors associatedwith prey size, we used
linear mixed effects models that included predator body
size, predator species, and season as fixed effects, and indi-
vidual predator identity, stream reach, and stream identity
as nested random effects (Zuur et al. 2009). We included all
possible interactions between thefixed effects, including the
3-way interaction. We log-transformed predator and prey
body sizes to conform to model assumptions and used like-
lihood ratio tests to compare the nested models that lacked
each of the interactions. Linear mixed effects models were
implemented with the lme4 R package (Bates et al. 2014).

To evaluate how dietary overlap between predators
changed over time, we applied a hierarchical cluster analysis
on proportional diet compositions of the 7 prey groups and
generated dendrograms that depicted dietary dissimilarity
among size-classes of each predator specieswithin each sea-
son. We used the unweighted pair-group method to cluster
dissimilarities in diets measured with Euclidean distance
(Ward 1963, Krebs 1989, Amundsen et al. 2003). We sup-
plemented this cluster analysis with higher resolution tax-
onomic data by calculating dietary overlap among species
and size classes within each season with the Schoener index
of % overlap,
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, Eq. 2

where pxi and pyi represent the proportion of prey type i in
the stomachs of predator species (or size classes) x and y,
respectively. % overlap ranges from 0 (no overlap) to 100%
(complete overlap) (Schoener 1970).

RESULTS
In total, we lavaged 2028 sculpin, 479 trout, and 107 sal-

amanders (see Table S1 for numbers of stomachs sampled
by size class and season). We found a total of 22,798 iden-
tifiable prey items belonging to 104 prey types. We did not
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find identifiableprey in115sculpin (5.67%), 19 trout (3.97%),
and 13 salamanders (12.1%) (Table S1). Diptera larvae and
Ephemeroptera larvae were most common and constituted
36.9 and 36.4% of all prey items, respectively (Fig. 1A–C).
In general, sculpin and salamander diets were comprised
primarily of benthic aquatic invertebrates, whereas trout
diets were comprised of a more even mixture of terrestrial,
aquatic, and semi-aquatic prey. Trout diets contained the
highest overall proportions of adult aquatic insects (9.4%)
and terrestrial prey (19.8%). Mean dietary niche breadth (Bi )
over all seasons combined was lowest (most specialized) in
sculpin (Bi 5 0:041; 95% confidence interval [CI]5 0.023–
0.059), highest (most generalized) in trout (Bi 5 0:078; 95%
CI 5 0.043–0.113), and intermediate in salamanders (Bi 5
0:062; 95% CI5 0.033–0.091).

Within each predator species, proportional diet compo-
sition and niche breadth varied based on predator size class.
Sampled predator body sizes ranged from 27 to 242 mm,
with salamanders (47–242 mm) and trout (30–223 mm)
spanning a larger size range than sculpin (27–81 mm; Ta-
ble S1, Fig. S1). For sculpin and trout, Diptera larvae were
found in higher proportions in the diets of smaller size classes,

whereas Ephemeroptera larvae were found in higher propor-
tions in larger size classes. Based on proportional diet compo-
sition averaged across seasons, large sculpin (61–81 mm)
consumed 19.1% fewer Diptera larvae and 19.5%more Ephem-
eroptera larvae than small sculpin (27–47 mm). Similarly,
large trout (107–223 mm) consumed 27.4% fewer Diptera
larvae and 11.3% more Ephemeroptera larvae than small
trout (30–54 mm). Large trout also consumed higher pro-
portions of adult aquatic insects and terrestrial prey than
small trout. Small salamanders (47–95mm) consumedhigh
proportions of Ephemeroptera larvae, but large salamanders
(96–242 mm) consumed more prey that were not Ephemer-
optera or Diptera (e.g., snails, crayfish, annelids, and other
rare prey). Mean dietary niche breadth was higher in larger
size classes within each predator species (Fig. 2A–C). Addi-
tionally, cannibalism on smaller individuals was observed in
14 sculpin (13 singletons, 1 doubleton) and 2 trout (both sin-
gletons). Predation on sculpin was observed in 2 salamanders
(both singletons).

Troutdiets exhibited thegreatest seasonal variation.This
variation included a shift in proportional consumption of
terrestrial thrips (Thysanoptera) from <1% in summer and

Figure 1. Proportional composition (based on counts) of primary prey groups in the diets of sculpin (CP), trout (OC), and sala-
manders (DT) in summer (A), autumn (B), and spring (C). Adult stages of aquatic insects are grouped separately from terrestrial or-
ganisms without aquatic life stages. The other category is composed of aquatic and semi-aquatic prey that amounted to <5% of the total
prey items within predator diets.
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autumn to 49.8% in spring. In spring, the consumed thrips
were almost entirely larvae, whereas adult thrips were only
consumed in summer and autumn. Proportions of Diptera
larvae and Ephemeroptera larvae found in trout stomachs
were also highly variable across seasons: trout diets con-
tained relatively high and even proportions of Diptera and
Ephemeroptera in summer (∼35 and ∼33%, respectively),

high proportions of Diptera (∼52%) and low proportions of
Ephemeroptera (12%) in autumn, and low proportions of
both inspring (∼9and∼15%;Fig. 1A–C).Troutdietaryniche
breadth also varied strongly with season from a low in au-
tumn (Bi 5 0:049; 95% CI 5 0.023–0.075), intermediate in
summer (Bi 5 0:067; 95% CI 5 0.047–0.089), and high in
spring (Bi 5 0:086; 95% CI5 0.049–0.123).

In contrast, sculpin and salamander diets exhibited little
seasonal variation in proportional diet composition and di-
etary niche breadth, and their diets rarely included thrips
(Tables S2–S4). Sculpin dietary niche breadth ranged from
low in summer (Bi 5 0:034; 95% CI5 0.019–0.049) to high
in spring (Bi 5 0:043; 95% CI 5 0.028–0.058). Salamander
dietary niche breadth was lowest in summer (Bi 5 0:044;
95% CI5 0.029–0.059) and highest in autumn (Bi 5 0:063;
95%CI5 0.036–0.090).

Figure 2. Mean (± 95 % confidence interval) dietary niche
breadth quantified with Levins’ (1968) standardized measure by
size class for sculpin (CP), trout (OC), and salamanders (DT) in
summer (A), autumn (B), and spring (C). Lower dietary niche
breadth values indicate more specialized diets.

Figure. 3. Linear regression plots depicting the relationships
between log-transformed total lengths of sculpin (A), trout
(B), and salamanders (C) and the log-transformed total lengths
of whole intact prey items in their stomach contents. Different
lines are fit for summer (solid), autumn (small dashed), and
spring (large dashed).
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The relationships between diet and species identity and
body size differed across seasons. For prey composition,
the mixed models with all 2-way interactions among fixed
effects had the highest relative performance (Tables S6, S7).
The 2nd-bestmodel included the 3-way interaction (Dmean
DIC 5 17.12). The next best models excluded either the
predator body size-by-predator species interaction (Dmean
DIC 5 48.95) or the predator body size-by-season interac-
tion (D mean DIC 5 54.15). Excluding either the predator
species-by-season interaction or all 2-way interactions most
decreased model performance (D mean DIC 5 579.79 and
596.73, respectively).

Prey size increased with predator body size (Fig. 3A–C),
and this relationship varied across predator species (spe-
cies ! size: df 5 2, v2 5 25.02; p < 0.001) but not across
seasons (season ! size: df 5 2, v2 5 4.88; p 5 0.087). The
3-way interaction was not significant (species ! season !
size: df5 4, v25 0.37; p5 0.98). Overall, mean prey length

(TL) was much larger in salamanders (TL 5 7:6 mm, r 5
6.7) than in sculpin (TL 5 2:8 mm, r5 2.7) or trout (TL 5
2:5 mm,r5 2.7).

Consistent with our other analyses, the hierarchical clus-
tering of diet similarity by size classes varied across seasons
(Fig. 4A–C). Diet dissimilarity among size classes was low-
est in summer (Fig. 4A), intermediate in autumn (Fig. 4B),
and highest in spring (Fig. 4C). In summer and autumn, the
diets of heterospecific size-class combinations were often
more similar than the diets of conspecific size-class combi-
nations. Size classes were only clustered according to pred-
ator species in spring, when sculpin and salamander diets
were similar to each other and highly dissimilar to trout diets.
The analysis of % overlap between species and size classes
was also consistent with other analyses (Table S5). Dietary
overlap generally decreased with increased differences in body
size within and between species, and trout size classes showed
the lowest dietary overlap with sculpin and salamander size
classes in spring.

DISCUSSION
The relative difference between intra- and interspecific

diet variation changed substantially across seasons, reflect-
ing temporal variation in the relationships between diet and
predator body size and species identity. These relationships
were driven partly by differences in prey availability. The
large increase in magnitude of interspecific diet variation in
spring, for instance, was associated with seasonal changes in
prey composition, particularly of terrestrial subsidies. Trout
diets were comprised of a mixture of terrestrial and aquatic
prey but were highly variable across seasons, and their spring
diets contained high proportions of terrestrial prey. In con-
trast, sculpin and salamander diets were comprised primar-
ily of benthic aquatic prey and showed relatively low sea-
sonal variation. This seasonal difference in diet variation is
consistentwithprevious studies that show that seasonal diet
shifts are ubiquitous among freshwater salmonids but are
not widely observed in sculpin or salamanders (Wilhelm
et al. 1999, Romero et al. 2005, Li et al. 2016, Cochran-
BiedermanandVondracek2017).Prey-specific sculpin feed-
ing rates are also relatively consistent across space and time
in our study streams (Preston et al. 2019), especially com-
pared to themorevariable troutdiets observed in thepresent
study.

Differences in dietary niche breadth among our focal
predators also stemmed from differences in foraging strate-
gies. Sculpin and salamanders are bottom-dwelling ambush
predators that feed primarily on benthic macroinvertebrates
(Bond 1963, Daniels and Moyle 1978, Kratz and Vinyard
1981, Wells 2007, Cudmore and Bury 2014). In contrast,
Cutthroat Trout are active swimmers that have a wider diet
breadth because they feed on both the benthos and through-
out the water column, and they commonly consume terres-
trial prey (Chapman andBjornn 1969, Romero et al. 2005, Li

Figure 4. Dendrograms generated from hierarchical cluster
analyses of proportional diet composition in size classes of scul-
pin (CP), trout (OC), and salamanders (DT) in summer (A), au-
tumn (B), and spring (C). Shorter branches represent greater
similarity in dietary composition between the connected
groups.
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et al. 2016). Trout diets are therefore expected to exhibit
greater responses to changes in terrestrial prey availability
than are sculpin and salamander diets. Further, the strong
seasonality in terrestrial prey subsidies compared to the rel-
ative consistencyof thebenthicprey assemblage inour study
streams (Preston et al. 2018) led to even stronger relative
seasonality in trout diets. These species-specific responses
to changes in prey assemblages are consistent with prior ex-
perimental work. For example, stream predators respond
to changes in the availability of terrestrial prey in a species-
specific manner based on differences in their diet breadth
and foraging behavior (Gillette 2012). Riparian consumers
also exhibit species-specific responseswhenaquatic-derived
subsidies are manipulated (Paetzold et al. 2006, Marczak
and Richardson 2007). Taken together, these results em-
phasize how the interplay of predator characteristics (e.g.,
diet breadth and foraging behavior) and prey characteristics
(e.g., seasonal changes in availability) can interact to drive
temporal shifts in the relative importance of intra- and in-
terspecific diet variation.

The high seasonal variation in trout diets was driven
largely by their consumption of western flower thrips, Frank-
liniella occidentalis. Larval thrips comprised nearly ½ of all
prey consumed by trout in spring but <2% of sculpin and sal-
amander diets. Moreover, the complete absence of larval
thrips in stomach contents in summer and autumn suggests
that thrip availability to stream predators is highly seasonal.
Thrips are widespread agricultural pests that hatch annu-
ally from eggs in plant tissues and later drop to the ground
before metamorphosing into adults (Sanderson 1990, Teu-
lon et al. 1993). The timing of the thrip lifecycle is tempera-
ture dependent, with the larval stage lasting just 5 to 20 days.
Thus, larval thrips apparently dropped from overhanging
canopy into our study streams prior to or during the spring
surveys and were subsequently consumed at disproportion-
ately high rates by trout compared to sculpin and salaman-
ders. Previous evidence of thrip consumption by stream
predators is scarce buthas beendocumented inBrookTrout
(Williams 1981) and sticklebacks (Hynes 1950). However,
similar pulsed inputs of terrestrial arthropods occur in for-
ested streamsandcontribute a largeportionof available prey
for stream predators (Wipfli 1997, Nakano et al. 1999b, Ka-
waguchi and Nakano 2001, Nakano and Murakami 2001,
Kawaguchi et al. 2003, Baxter et al. 2005, Romero et al.
2005, Li et al. 2016). Our results demonstrate how a tempo-
ral resource pulse in even a single allochthonous prey taxon
could reshape predator–prey interactions.

Predator body size had strong and relatively-consistent
associations with diet composition. In all seasons, we found
shifts in the relative proportions of prey groups in stomach
contents as well as increases in both dietary niche breadth
and prey size with increasing predator body size. Body size
is a key trait that dictates an organism’s trophic ecology and
interactionswith itsenvironment(WernerandGilliam1984,
Woodward and Warren 2005, Woodward et al. 2005, Pet-

chey et al. 2008, Rudolf et al. 2014). For instance, prey con-
sumption within a guild of stream predators can be driven
primarily by body-size constraints that limit predation to a
subset of the prey-size spectrum (Woodward and Hildrew
2002). Here, we found that dietary overlap was generally
higher between groups of similar body size and, in several
cases during summer and autumn, dietary overlapwas higher
between heterospecifics of similar body size than between
conspecifics of different body size (Table S5). For example,
in both summer and autumn, the diets of small trout and
small sculpin overlapped more than the diets of small scul-
pin and large sculpin. In spring, however, trout diets were
highly dissimilar from sculpin and salamander diets, and di-
etary overlap between small sculpin and small trout was <½
the overlap between small and large sculpin. This substan-
tial shift in dietary overlap across seasons reflects temporal
variation in the relationships between diet composition and
body size and species identity, which was driven by trout
consumption of thrips in spring.

Temporal variability in the relative magnitudes of intra-
vs interspecific variation may promote the coexistence of
our focal predators by limiting similarity in resource use
over time. According to coexistence theory, increased dis-
similarity in resource use should lead to decreased compe-
tition (MacArthur and Levins 1967, Barabás et al. 2018).
Thus, seasonal shifts in intra- and interspecific diet variation,
such as those caused by the temporal pulse of larval thrips
in our study, may coincide with changes in the strength
of competition (Zaret and Rand 1971, Chase and Leibold
2003, Correa and Winemiller 2014, Neves et al. 2018).
For instance, Zaret and Rand (1971) suggest that decreased
interspecific competition during the wet season, when food
resources in tropical streams are high, explains seasonal diet
shifts in characinfishes. Such temporal variation in resource
partitioning may be a key mechanism that facilitates coex-
istence of stream predators (Nakano et al. 1999a, Dineen
et al. 2007). Our inferences of dietary niche differentiation
are limited because we used counts in diet analyses rather
than biomass, which would better approximate energetic
contributions of prey, and we did not estimate feeding rates
or quantify prey availability. Further, we were unable to in-
fer the strength of competition in our system with the col-
lected data because species that overlap in resources do not
necessarily compete (Menge 1979), competition may oc-
cur along multiple niche dimensions beyond diet (Pianka
1975), and patterns of niche overlap may reflect “ghosts
of competition past” (Connell 1980). Our study neverthe-
less supports the hypothesis that the relative magnitudes
of intra- and interspecific diet variation change over time.
Future research is needed to link these shifts in intra- and in-
terspecific diet variation to temporal changes in the strength
of competition.

Seasonality in environmental factors and the strength of
predator–prey interactions iswidespread (Ostfeld andKees-
ing 2000, Woodward et al. 2010, Thompson et al. 2012,
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Humphries et al. 2017, Calizza et al. 2018), with temporal
variation in the relative magnitudes of intraspecific and in-
terspecific diet variation probably occurring in most food
webs. Temporal pulses in the availability of even a single
prey type are common and occur across various time scales
(Yang et al. 2010). Examples include diurnal pulses of ma-
rine copepods consumed by pelagic fishes (Godin 1981),
annual pulses of anadromous fish carcasses consumed by
minks (Ben-David 1997), and multiannual fluctuations in
abundances of rodents consumed by owls (Korpimäki 1992).
Increasing interest in understanding the role of pulsed re-
source dynamics in ecological processes emphasizes the need
to conduct trophic studies on time scales thatmatch the rel-
evant intrinsic and extrinsic drivers, such as seasonal varia-
tion in prey assemblages (Yang et al. 2008).We recommend
that future studies of trophic interactions and species co-
existence should consider temporal resource pulses and in-
corporate time scales that are relevant to the life histories of
the interacting species.
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