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Appendix A from D. L. DeAngelis et al., “The Effect of Travel Loss on
Evolutionarily Stable Distributions of Populations in Space”
(Am. Nat., vol. 178, no. 1, p. 15)

Calculation of the Optimal Movement Coefficients of an Evolutionarily Stable
Strategy
To understand the stability of any such equilibrium , , a standard approach is to determine the* * * *¯E (0, P , R ,M )
real parts of the eigenvalues of the matrix J, the Jacobian matrix for the system (9) evaluated at this equilibrium
solution. If we let denote the Jacobian matrix for system (8) evaluated at , J has the form*J E(8) (8)

ˆ⎡ ⎤D 0
⎢ ⎥J p ,* J⎣ ⎦(8)

where denotes the matrix with all components equal to 0, the components of the matrix D are0̂ N # 3N N # N
given by

ˆ N(1! ! )m i ( jji jiD p ,ij * * ˆb a R ! d ! f M ! m i p j!i i i i i i ij{
jp1

for , where the asterisk indicates a matrix with components that are not involved in ouri, j ! {1, … , N} 3N # N
discussion below.
Because of the special structure of the matrix, it follows that any eigenvalue must satisfyl

det (J ! lI ) p det (J ! lI ) det (D ! lI ) p 0,4N (8) 3N N

where denotes the identity matrix for any positive integer m.I m # mm

In this appendix, we focus our discussion on the matrix D, usually referred to as the invasion matrix. Since
we are assuming (H2) (see text), it follows that the nonnegative matrix with components is irreducible. If cˆ(m )ij
is a large enough positive constant so that the diagonal entries of are positive, and if is anyD p D " cI lN

eigenvalue of with associated eigenvector , then is an eigenvalue of D with the same eigenvector. SoD v l ! c
the following is a consequence of the Perron-Frobenius theorem (Horn and Johnson 1999):

• The matrix D has a dominant eigenvalue, denoted by , such that is real, and the real parts of alll l1 1

other eigenvalues are strictly less than .l1

• Both the right and the left eigenspace associated with is one-dimensional. In particular, all of thel1

components of the left and right eigenvectors corresponding to can be chosen to be positive, and forl1

all eigenvectors of other eigenvalues there exists a component that is not positive.
• is a simple root of the characteristic polynomial of D. Using the implicit function theorem, it followsl1

that is a smooth function of and , .ˆl m m i, j ≥ 11 ij ij

In order to justify the rates given in equations (17), we establish two preliminary results. For every ,2 ≤ i ≤ N
set , where T denotes the transpose.TV p (D , … , D )i i2 iN

Lemma 1. Suppose that for every . If for every , are linearlym̂ p m i, j m 1 0 2 ≤ i ≤ N V , … , Vij ij 1i 2 N

independent and thus form a basis of .N!1!
Proof. Let denote the matrix obtained by removing the first row and first column(D ) (N ! 1)# (N ! 1)ij i, j≥2

of matrix D. We claim that if for every , then is invertible. To see this, since the off-m 1 0 2 ≤ i ≤ N (D )1i ij i, j≥2
diagonal entries of are all nonnegative, by the Perron-Frobenius Theorem there exists some eigenvalue(D )ij i, j≥2
of , denoted by , that is real, and the real parts of all other eigenvalues are less than or equal to .(D ) h hij i, j≥2 1 1
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Moreover, has a left eigenvector with all nonnegative components, denoted ; that is,h (v , … , v )1 2 N

(v , … , v )(D ) p h (v , … , v ). (A1)2 N ij i, j≥2 1 2 N

Recall that when , zero is an eigenvalue of D with as a right eigenvector.*ˆ ˆ(m , … , m ) p (m , … , m ) P12 1N 12 1N

Hence,

* * T * T(D ) (P , … , P ) p !P ((1! ! )m , … , (1! ! )m ) , (A2)ij i, j≥2 2 N 1 12 12 1N 1N

where denotes the transpose of .* * T * *(P , … , P ) (P , … , P )2 N 2 N

Taking the inner product of both sides of equation (A1) with the vector , and applying the identity* *(P ,… ,P )2 N

equation (A2), we have

N N
* *h v P p !P v (1! ! )m .! !1 i i 1 i 1i 1i

ip2 ip2

Since for every and is a nonzero vector, we see that . This implies thatm 1 0, v ≥ 0 i ≥ 2 (v , … , v ) h ! 01i i 2 N 1

the real parts of all eigenvalues of are negative. Hence, is invertible. As ,(D ) (D ) V p (D , … , D )ij i, j≥2 ij i, j≥2 i i2 in

. Since is invertible, are linearly independent.T(D ) p (V , … , V ) (D ) V , … , Vij i, j≥2 2 N ij i, j≥2 2 N

We will also use the following result that is a corollary of Cramer’s rule.
Lemma 2. Suppose that vectors form a basis of . If some vector satisfies the propertyd dV , … , V ! V ! !1 d 0

that are linearly dependent for every , then must be the zero vector.V , … , V , V , V , … , V 1 ≤ i ≤ d V1 i!1 0 i"1 d 0

We begin by justifying the rates for scenario 2 first, since the justification for scenario 1 is more difficult.

Scenario 2: Calculation of ,m 2 ≤ i ≤ N1i, opt

Theorem 1. Suppose that and for all and that assumptions (H0), (H1), and (H2,* *R 1 0 M ≥ 0 i p 1, … , Ni i

scenario 2) hold.
a) If there exist with for such that forN{m } m 1 0 2 ≤ i ≤ N l ≤ 0 (m , … , m ) p1i, opt ip2 1i, opt 1 12 1N

and all in a neighborhood of , then for every ,ˆ ˆ(m , … , m ) (m , … , m ) (m , … , m ) 2 ≤ i ≤ N12, opt 1N, opt 12 1N 12, opt 1N, opt

N*P 1 (1! ! ) (1! ! )i ij ji* *m p (1! ! ) m " m P ! m P . (A3)!1i, opt i1 i1 ij i ji j* * [ ]P P (1! ! ) (1! ! )jp21 1 1j 1i

b) Suppose that is positive for every . If , then form i ≥ 2 (m , … , m ) p (m , … , m ) l { 01i, opt 12 1N 12, opt 1N, opt 1

any , .m̂ 1 0 j ≥ 21j

Under assumption (H2, scenario 2), the invasion matrix D has components

N⎧ * * ˆb a R ! d ! f M ! m i p j p 1!1 1 1 1 1 1 1hhp1
N

* *⎪b a R ! d ! f M ! m i p j ≥ 2!i i i i i i ihhp1⎨D p .ij

ˆ(1! ! )m i ≥ 2, j p 11i 1i⎪
(1! ! )m i ≥ 1, j ≥ 2, i ( j⎩ ji ji

We first note that

l F p 0. (A4)ˆ ˆ1 (m , …,m )p(m , …,m )12 1N 12 1N

Biologically, this is because the invader is a cloned copy of the resident P. The mathematical reasoning is asP̂
follows: when , 0 is an eigenvalue of D, with as a right eigenvector. Since*ˆ ˆ(m , … , m ) p (m , … , m ) P12 1N 12 1N

all components of are all positive, 0 is the dominant eigenvalue of D; that is, equation (A4) holds.*P
Proof of Theorem 1(a). If there exist some with for every such that(m , … , m ) m 1 0 2 ≤ i ≤ N l ≤ 012 1N 1i 1
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for all in a neighborhood of , thenˆ ˆ(m , … , m ) (m , … , m )12 1N 12 1N

"l1 p 0 (A5)Fˆ"m ˆ ˆ1i (m , …,m )p(m , …,m )12 1N 12 1N

for every .i ≥ 2
Under assumption (H2, scenario 2), the matrix , has componentsD ! l I1 N

N⎧ * * ˆb a R ! d ! f M ! m ! l i p j p 1,!1 1 1 1 1 1 1h 1hp1
N

* *⎪b a R ! d ! f M ! m ! l i p j ≥ 2,!i i i i i i ih 1hp1⎨( )D ! l I p .1 N ij
ˆ(1! ! )m i ≥ 2, j p 1,1i 1i⎪

(1! ! )m i ≥ 1, j ≥ 2, i ( j⎩ ji ji

Instead of differentiating the determinant of the matrix with respect to directly, we first do theˆD ! l I m1 1i

following manipulation. Dividing the ith row of by and adding it to the first row, andD ! l I (1! ! )1 1i

repeating this process for each , we see that matrix is transformed into a new matrix, denoted2 ≤ i ≤ n D ! l I1
by , which can be expressed byD̃

* *⎧b a R ! d ! f M ! l i p j p 11 1 1 1 1 1 1

N
* *b a R ! d ! f M ! m ! l i p j ≥ 2!i i i i i i ih 1hp1⎪˜ ˆD p (1! ! )m i ≥ 2, j p 1ij 1i 1i⎨

(1! ! )m i ≥ 2, j ≥ 2, i ( jji ji

N N1 (1! ! )jh* *⎪ ( )b a R ! d ! f M ! m ! l " (1! ! )m ! m i p 1, j ≥ 2.! !j j j j j j jh 1 j1 j1 jhhp1 hp2(1! ! ) (1! ! )⎩ 1j 1h

Clearly, is equivalent to . For every , differentiate the determinant of the˜FD ! l IF p 0 FDF p 0 2 ≤ i ≤ N1

matrix with respect to and evaluate the result at By applying both˜ ˆ ˆ ˆD m (m , … , m ) p (m , … , m ).1i 12 1N 12 1N

equations (A4) and (A5), we find that

˜"FDF
p 0Fˆ"m ˆ ˆ1i (m , …,m )p(m , …,m )12 1N 12 1N

if and only if the vectors are linearly dependent, where the vector is given byV , … , V , V , V , … , V V2 i!1 0 i"1 N 0

˜ ˜V p (D , … , D ).0 12 1N

By lemma 1, are linearly independent and form a basis for . Therefore, by lemma 2, must beN!1V , … , V ! V2 N 0

the zero vector in . Hence, for every ; that is, noting that by equation (A4),N!1 ˜! D p 0 j ≥ 2 l p 01j 1

N N1 (1! ! )jh* *b a R ! d ! f M ! m " (1! ! )m ! m p 0. (A6)! !j j j j j j jh j1 j1 jh( )(1! ! ) (1! ! )hp1 hp21j 1h

Recall that at equilibrium we have, for every ,j ≥ 2

N N *Ph* *b a R ! d ! f M ! m " (1! ! )m p 0. (A7)! !j j j j j j jh hj hj *[ ]Php1 hp1 j
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Substituting equation (A7) into equation (A6), we have
N N* *P (1! ! ) (1! ! ) P1 jh hj hm p (1! ! )m " m ! m . (A8)! !1j j1 j1 jh hj* *P (1! ! ) (1! ! ) Php2 hp2j 1h 1j j

Dividing equation (A8) by , we have* *P /P1 j

N N* * *P (1! ! ) P (1! ! ) Pj jh j hj hm p (1! ! )m " m ! m . (A9)! !1j j1 j1 jh hj* * *P (1! ! ) P (1! ! ) Php2 hp21 1h 1 1j 1

This completes the proof of part (a), theorem 1. "
Lemma 3. For the movement strategy given by equation (A3), the immigration and emigration flux for patch 1

is balanced; that is, if , then(m , … , m ) p (m , … , m )12 1N 12, opt 1N, opt

* *(1! ! )m P p m P ; (A10)! !j1 j1 j 1j, opt 1( )
j j

or equivalently, the resident species at equilibrium (with invader absent) has zero fitness in patch 1:
* *b a R ! d ! f M p 0. (A11)1 1 1 1 1 1

Proof. Multiplying equation (A3) by and summing up for , we have*P 2 ≤ i ≤ N1

N N N (1! ! ) (1! ! )ih hi⎡ ⎤* * * *
⎢ ⎥m P p (1! ! )m P " m P ! m P! ! !1i, opt 1 i1 i1 i ih i hi h( ) (1! ! ) (1! ! )ip2 ip2 i, hp2 ⎣ ⎦1h 1i

N
*p (1! ! )m P ,! i1 i1 i

ip2

which implies that equation (A10) holds since we assume that . Clearly, equation (A11) follows fromm p 011

equation (A10) and equation (9b) for . "*P1
Lemma 4. If , then for every patch , the resident species at(m , … , m ) p (m , … , m ) i ≥ 212 1N 12, opt 1N, opt

equilibrium has fitness

⎧0 i p 1
* * ⎪b a R ! d ! f M p (A12)N ( )1! !i i i i i i 1i⎡ ⎤⎨

⎢ ⎥( ) ( ) ( )1! 1! ! 1! ! m " m 1! 1! ! i ≥ 2.![ ]⎪ 1i i1 i1 ih ihhp2 ( )1! !⎩ ⎣ ⎦1h

Proof. This result follows by using equation (A3) in equation (9b) for . "*Pi
Proof of Theorem 1(b). By lemmas 3 and 4, we see that if , then(m , … , m ) p (m , … , m )12 1N 12, opt 1N, opt

N⎧ ˆ! m i p j p 1! 1hhp1
N (1! ! )1i⎪!(1! ! )(1! ! )m ! m (1! ! ) i p j ≥ 2!1i i1 i1 ih ihhp2 (1! ! )⎨ 1hD p .ij

ˆ(1! ! )m i ≥ 2, j p 11i 1i⎪
(1! ! )m i ≥ 1, j ≥ 2, i ( j⎩ ji ji

Set

1 1
V p 1, , … , .∗ ( )1! ! 1! !12 1N

Then, . That is, the vector is the left eigenvector of D corresponding to the eigenvalue 0.V D p (0, … , 0) V∗ ∗
Since all components of are positive, 0 must be the dominant eigenvalue of matrix D, and all otherV∗
eigenvalues must have strictly negative real parts. "
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Scenario 1: Calculation of ,m 2 ≤ i ≤ Ni1, opt

Theorem 2. Suppose that and for all and that assumptions (H0), (H1), and (H2,* *R 1 0 M ≥ 0 i p 1, … , Ni i

scenario 1) hold.
a) If there exist with for such that forN{m } m 1 0 2 ≤ i ≤ N l ≤ 0 (m , … , m ) pi1, opt ip2 i1, opt 1 21 N1

and all in a neighborhood of , then for every ,ˆ ˆ(m , … , m ) (m , … , m ) (m , … , m ) 2 ≤ i ≤ N21, opt N1, opt 21 N1 21, opt N1, opt

N*P 1 (1! ! )(1! ! )1 ij j1* *m p (1! ! )m " (1! ! )m P ! m P . (A13)!i1, opt 1i 1i ji ji j ij i* * [ ]P P (1! ! )jp2i i i1

b) Suppose that is positive for every . If , then form i ≥ 2 (m , … , m ) p (m , … , m ) l { 0i1, opt 21 N1 21, opt N1, opt 1

any , .m̂ j ≥ 2j1

Under assumption (H2) (scenario 1), the matrix D has components
N⎧ * *b a R ! d ! f M ! m i p j p 1!1 1 1 1 1 1 1hhp1

* *⎪ ˆb a R ! d ! f M ! m ! m i p j ≥ 2!i i i i i i i1 ihh≥2⎨D p .ij

ˆ(1! ! )m i p 1, j ≥ 2j1 j1⎪
(1! ! )m i ≥ 2, j ≥ 1, i ( j⎩ ji ji

By a similar argument as for scenario 2,

l F p 0. (A14)ˆ ˆ1 (m , …,m )p(m , …,m )21 n1 21 N1

Proof of Theorem 2(a). If there exist some with for every such that(m , … , m ) m 1 0 2 ≤ i ≤ N l ≤ 021 N1 i1 1

for all in a neighborhood of , thenˆ ˆ(m , … , m ) (m , … , m )21 N1 21 N1

"l1 p 0 (A15)Fˆ"m ˆ ˆi1 (m , …,m )p(m , …,m )21 N1 21 N1

for every .i ≥ 2
Under the assumption (H2, scenario 1), the matrix has componentsD ! l I1 N

N⎧ * *b a R ! d ! f M ! m ! l i p j p 1!1 1 1 1 1 1 1h 1hp1
N

* *⎪ ˆb a R ! d ! f M ! m ! m ! l i p j ≥ 2!i i i i i i i1 ih 1h≥2⎨( )D ! l I p .1 N ij
ˆ(1! ! )m i p 1, j ≥ 2j1 j1⎪

(1! ! )m i ≥ 2, j ≥ 1, i ( j⎩ ji ji

By direct calculation, we find that for every ,2 ≤ k ≤ N

"FD ! l I F1 N p 0Fˆ"m ˆ ˆk1 (m , …,m )p(m , …,m )21 n1 21 N1

is equivalent to , where matrix is given byFD F p 0 D1 1

N⎧ * *b a R ! d ! f M ! m i p j ≥ 1, i ( k!i i i i i i ihhp1⎪(1! ! ) i p 1, j p kk1
⎨(D ) p !1 i p j p k1 ij

0 i ≥ 2, i ( k, j p k⎪
(1! ! )m i ≥ 1, j ≥ 1, i ( j, j ( k.⎩ ji ji
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Since is an equilibrium point, by equation (9b),*E
*Ph* *b a R ! d ! f M ! m p ! (1! ! )m! !i i i i i i ih hi hi *Ph≥1 h≥1 i

for every . It follows that is equivalent to , where matrix is given by1 ≤ i ≤ N FD F p 0 FD F p 0 D1 2 2

*N⎧ Ph! m (1! ! ) i p j ≥ 1, i ( k! hj hj *hp1 Pj
(1! ! ) i p 1, j p kk1⎪
⎨(D ) p !1 i p j p k .2 ij

0 i ≥ 2, i ( k, j p k⎪
(1! ! )m i ≥ 1, j ≥ 1, i ( j, j ( k⎩ ji ji

Multiplying the jth column of by for every , is equivalent to , where matrix*D P j ( k FD F p 0 FD F p 02 j 2 3

is given byD3

N⎧ *! (1! ! )m P i p j ≥ 1, i ( k! hj hj hhp1

(1! ! ) i p 1, j p kk1⎪
⎨(D ) p !1 i p j p k .3 ij

0 i ≥ 2, i ( k, j p k⎪
*(1! ! )m P i ≥ 1, j ≥ 1, i ( j, j ( k⎩ ji ji j

Multiplying the ith row of by for each and adding the results to the first row,D (1! ! ) 2 ≤ i ≤ N FD F p 03 i1 3

is equivalent to , where matrix is given byFD F p 0 D4 4

⎧A i p 1, j ≥ 1, j ( kj

N
*! (1! ! )m P i p j ≥ 2, i ( k! hj hj hhp1⎪0 i p 1, j p k

(D ) p ,⎨4 ij

!1 i p j p k

0 i ≥ 2, i ( k, j p k⎪
*(1! ! )m P i ≥ 1, j ≥ 1, i ( j, j ( k⎩ ji ji j

where is defined asA1
N N

* *A p (1! ! )(1! ! )m P ! (1! ! )m P ,! !1 1j j1 1j 1 j1 j1 j
jp1 jp1

and for , is defined byi ≥ 2 Ai

N
* * * *A p (1! ! ) [m P ! (1! ! )m P ] " [(1! ! )(1! ! )m P ! (1! ! )(1! ! )m P ] .!i i1 i1 i 1i 1i 1 ih h1 ih i hi i1 hi h

hp2

It is easy to check that (note that ). Since all of the entries in the kth column of are 0N! A p 0 m p 0 Di 11 4ip1

except , we see that is equivalent to , where the matrix is given(D ) FD F p 0 FD F p 0 (N ! 1)# (N ! 1) D4 kk 4 5 5
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by

⎧A i p 1, 1 ≤ j ! kj

A i p 1, k ≤ j ≤ N ! 1j"1

N!1
*! (1! ! )m P 2 ≤ i p j ! k! hj hj hhp1

N!1
*⎪! (1! ! )m P k ≤ i p j ≤ N ! 1! h, j"1 h, j"1 hhp1

(D ) p .⎨5 ij
*(1! ! )m P 2 ≤ i ! k, 1 ≤ j ! k, i ( jj, i j, i j

*(1! ! )m P k ≤ i ≤ N ! 1, 1 ≤ j ! kj, i"1 j, i"1 j

*(1! ! )m P 2 ≤ i ! k, k ≤ j ≤ N ! 1j"1, i j"1, i j"1⎪
*(1! ! )m P k ≤ i ≤ N ! 1, k ≤ j ≤ N ! 1, i ( j⎩ j"1, i"1 j"1, i"1 j"1

Since , adding the jth column to the first column for every j with , we see that isN! A p 0 j ≥ 2 FD F p 0i 5ip1

equivalent to , where the matrix is given byFD F p 0 (N ! 1)# (N ! 1) D6 6

⎧!A i p j p 1k

A i p 1, 2 ≤ j ! kj

A i p 1, k ≤ j ≤ N ! 1j"1

N!1
*! (1! ! )m P 2 ≤ i p j ! k! hj hj hhp1

N!1
*! (1! ! )m P k ≤ i p j ≤ N ! 1! h, j"1 h, j"1 hhp1⎪

*(D ) p !(1! ! )m P 2 ≤ i ! k, j p 1 .⎨6 ij ki ki k

*!(1! ! )m P k ≤ i ≤ N ! 1, j p 1k, i"1 k, i"1 k

*(1! ! )m P 2 ≤ i ! k, 2 ≤ j ! k, i ( jji ji j

*(1! ! )m P k ≤ i ≤ N ! 1, 2 ≤ j ! kj, i"1 j, i"1 j

*(1! ! )m P 2 ≤ i ! k, k ≤ j ≤ N ! 1j"1, i j"1, i j"1⎪
*(1! ! )m P k ≤ i ≤ N ! 1, k ≤ j ≤ N ! 1, i ( j⎩ j"1, i"1 j"1, i"1 j"1

Multiply the first column of by !1 and move it to become the th column, and then move the firstD (k ! 1)6

row to become the th row. We obtain a new matrix, denoted by . We see that is equivalent(k ! 1) D FD F p 07 6

to . To characterize , define the matrix asFD F p 0 D (N ! 1)# (N ! 1) D7 7 8

N!1⎧ *! (1! ! )m P 1 ≤ i p j ≤ N ! 1!⎪ h, j"1 h, j"1 hhp1⎨(D ) p8 ij ⎪ *(1! ! )m P 1 ≤ i, j ≤ N ! 1, i ( j⎩ j"1, i"1 j"1, i"1 j"1

and let denote the th row of the matrix for every . By the definition of , we see that theV (i ! 1) D 2 ≤ i ≤ N Di 8 8

matrix can be obtained by replacing the th row of by the vector(N ! 1)# (N ! 1) D (k ! 1) D 1# (N ! 1)7 8

V p (A ,… , A ).0 2 N

Since , are linearly dependent for any . By lemma 1, we see thatFD F p 0 V , … , V , V , V , … , V 2 ≤ k ≤ N7 2 k!1 0 k"1 N
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are linearly independent and thus form a basis of . By lemma 2, we see that is the zero vectorN!1V , … , V ! V2 N 0

in . Hence, for every and . As directly yields equation (A13), this completesN!1! A p 0 i ≥ 2 A p 0 A p 0i 1 i

the proof of part (b), theorem 2. "
As a direct consequence of equation (A13), we have
Lemma 5. For the movement strategy given by equation (A13), the expected fitness of the resident species at

equilibrium (with invader absent) is given by
N⎧ [1! (1! ! )(1! ! )]m i p 1! 1j j1 1j⎪ jp2* *b a R ! d ! f M p . (A16)⎨ Ni i i i i i (1! ! )(1! ! )ij j1⎡ ⎤
⎢ ⎥⎪ 1! m i ≥ 2! ijjp2 (1! ! )⎩ ⎣ ⎦i1

Proof of Theorem 2(b). By lemma 5, we see that if , then(m , … , m ) p (m , … , m )21 N1 21, opt N1, opt

N⎧ ( ) ( )! 1! ! 1! ! m i p j p 1! 1h h1 1hhp2
N1⎪ ˆ ( ) ( )!m ! 1! ! 1! ! m i p j ≥ 2!1h ih h1 ihhp2( )1! !⎨ i1D pij

ˆ(1! ! )m i p 1, j ≥ 2j1 j1⎪
(1! ! )m i ≥ 2, j ≥ 1, i ( j.⎩ ji ji

Set Then, . That is, the vector is the left eigenvector of DV p (1, 1! ! , … , 1! ! ) . V D p (0, … , 0) V∗ 21 N1 ∗ ∗
corresponding to the eigenvalue 0. Since all components of are positive, 0 must be the dominant eigenvalue ofV∗
matrix D, and all other eigenvalues must have strictly negative real parts. "

Literature Cited Only in Appendix A
Horn, R. A., and C. R. Johnson. 1999. Matrix analysis. Cambridge University Press, Cambridge.
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Appendix B from D. L. DeAngelis et al., “The Effect of Travel Loss on
Evolutionarily Stable Distributions of Populations in Space”
(Am. Nat., vol. 178, no. 1, p. 15)

Interpretation of the Rates Given by Equation (17a) for the Three-Patch
Tritrophic Case in Scenario 1
We describe a typical example in the three-patch case below. All parameters were fixed using the values given in
table B1 except the rates , , , and .ˆ ˆm m m m21 31 21 31

The rates given by formula (17a) were calculated (to machine accuracy) using Matlab: m p21, opt

and . When the resident uses these rates, based on lemma 5,0.092409525773196 m p 0.33546857142857131, opt

its fitness at the boundary equilibrium with the invader absent (shown here rounded to 3 decimal places, but
calculated to 15 decimal places),

* * * *ˆ(P , P , R ,M ) p (0, 0, 0, 30, 22.727, 31.818, 32.941, 43.402, 19.727, 22.476, 26.115, 49.65),

on patch 1 is 0.02, on patch 2 is !0.002, and on patch 3 is 0. It is interesting to note that as predicted by
lemma 5, this is an example where the fitness on patch 2 is negative.
Recall that in the two-patch case, an optimal movement rate exists given by formula (14), and when the

resident chooses this rate, no other genotype using a different rate can successfully invade. This is proved
analytically in Y. Lou and C.-H. Wu (unpublished manuscript) and is illustrated in figure 4. In reality, it is
impossible for a resident to choose the precise optimal movement rate, so the outcome of competition (exclusion
of one genotype or the other, or coexistence) will in fact always be determined by the relative values of the
movement rates as illustrated in figure 4A, 4C. If the resident and the invader choose rates on opposite sides of
the optimal rate, there is coexistence. Therefore, which rate is closer to the optimal rate matters only when either
the resident and the invader both choose rates that are smaller or both choose rates that are larger than the
optimal rate. Then, it is the population that chooses the rate closer to the optimal rates that wins, driving the
other population to extinction.
This inability to select rates exactly equal to the optimal rates also occurs on a computer, due to round-off

errors. This complicates numerical calculations in the immediate vicinity of the optimal rates. In particular, we do
not know whether the rates we enter and think are the precise rates given by the formula are actually both
slightly larger or both slightly smaller or whether one is larger and one is smaller than the precise rates. To
complicate matters further, the invasion matrix has a zero eigenvalue if the precise rates are entered, making
convergence very slow.
To test the predictions of our rates, we carried out a number of experiments using the AUTO interface in the

software package XPPAUT (see Ermentrout 2002) to continue equilibrium solutions numerically and detect
bifurcations, that is, detect changes in the stability and/or number of equilibrium solutions as the value of a
parameter, called the bifurcation parameter, is varied.
Experiment I. We chose the residents’ movements rates and , close to the optimal rates andm m m21 31 21, opt

, respectively, but both larger than the optimal rates; and we chose the invaders’ movement rates andˆm m31, opt 21

, both even larger than the residents’ movement rates. As expected, the resident outcompeted the invader,m̂31

driving it to extinction. Then, using one of the invaders’ movement rates, , as the bifurcation parameter, wem̂21

allowed it to decrease. The resident continued to outcompete the invader until reached a critical rate, *m̂ m !21 1

, at which there was a transcritical bifurcation resulting in the stable coexistence of both the resident andm21, opt

the invader for values of .*m̂ ! m21 1

Experiment II. We chose the residents’ movements rates and , close to the optimal rates andm m m21 31 21, opt

, respectively, but both smaller than the optimal rates; and we chose the invaders’ movement rates andˆm m31, opt 21

, both even smaller than the residents’ movement rates. Again, as expected, the resident outcompeted them̂31
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invader, driving it to extinction. Then, using one of the invaders’ movement rates, , as the bifurcationm̂21

parameter, we allowed it to increase. The resident continued to outcompete the invader until reached am̂21

critical rate, , at which there was a transcritical bifurcation resulting in the stable coexistence of both*m 1 m2 21,opt

the resident and the invader for values of .*m̂ 1 m21 2

Experiment III. We chose the residents’ movements rates and . Onceˆ ˆm 1 m 1 m m ! m ! m21 21 21, opt 31 31 31, opt

more, as expected, the resident outcompeted the invader, driving it to extinction. Then, using the invaders’
movement rates as the bifurcation parameter, we allowed it to increase. The resident continued to outcompetem̂31

the invader until reached a critical rate, , at which there was transcritical bifurcation resulting in*m̂ m 1 m31 3 31, opt

the stable coexistence of both the resident and the invader for values of .*m̂ 1 m31 3

Experiment IV. We chose rates and and allowed to vary. As expected,ˆ ˆm p m p m m ! m m31 31 31, opt 21 21, opt 21

the outcome was similar to that described by figure 4A in the two-patch case, with the transcritical bifurcation
resulting in coexistence occurring at the optimal rate .m21, opt

Experiment V. We chose rates and and allowed to vary. As expected, theˆ ˆm p m p m m 1 m m31 31 31, opt 21 21, opt 21

outcome was similar to that described by figure 4C in the two-patch case, with the transcritical bifurcation
resulting in coexistence occurring at the optimal rate .m21, opt

Experiment VI. We entered the rates calculated using Matlab for both of the residents’ rates, and we chose two
nonoptimal rates for the invaders. Convergence was too slow for us to be able to distinguish whether the invader
would die out completely or coexist with the resident. Starting AUTO from the boundary equilibrium with only
the resident present, AUTO did not detect a bifurcation to a coexistence equilibrium, but because of the zero
eigenvalue of the invasion matrix, AUTO had difficulty determining the stability of the boundary equilibrium. It
is therefore difficult to say with any certainty that no such bifurcation occurs.

Table B1. Parameter values used to illustrate the three-patch model

a1 p .01 b1 p .5 c1 p .5 d1 p .01 r1 p 1.7 K1 p 40 dm1 p .09
a2 p .009 b2 p .55 c2 p .55 d2 p .008 r2 p 1.55 K2 p 50 dm2 p .1
a3 p .03 b3 p .48 c3 p .6 d3 p .011 r3 p 1.8 K3 p 42 dm3 p .105
!12 p .03 !21 p .03 !13 p .02 !31 p .01 !23 p .01 f1 p .006
m12 p .23 m13 p .21 m23 p .2 m32 p .0 f2 p .008

p .23m̂12 p .21m̂13 p .2m̂23 p 0m̂32 f3 p .0055


