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abstract: A key assumption of the ideal free distribution (IFD) is
that there are no costs in moving between habitat patches. However,
because many populations exhibit more or less continuous popu-
lation movement between patches and traveling cost is a frequent
factor, it is important to determine the effects of costs on expected
population movement patterns and spatial distributions. We consider
a food chain (tritrophic or bitrophic) in which one species moves
between patches, with energy cost or mortality risk in movement.
In the two-patch case, assuming forced movement in one direction,
an evolutionarily stable strategy requires bidirectional movement,
even if costs during movement are high. In the N-patch case, as-
suming that at least one patch is linked bidirectionally to all other
patches, optimal movement rates can lead to source-sink dynamics
where patches with negative growth rates are maintained by other
patches with positive growth rates. As well, dispersal between patches
is not balanced (even in the two-patch case), leading to a deviation
from the IFD. Our results indicate that cost-associated forced move-
ment can have important consequences for spatial metapopulation
dynamics. Relevance to marine reserve design and the study of stream
communities subject to drift is discussed.

Keywords: ideal free distribution, evolutionarily stable strategy, for-
aging strategy with movement costs, food chain, metapopulation,
stream drift.

Introduction

Populations are distributed in space, often in patches of
habitat scattered over a landscape or region. The distri-
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bution of animals is a consequence of the pattern of move-
ment between these patches. There are alternative possible
assumptions regarding this movement. One assumption is
that animals simply move randomly between patches. An-
other is that the movement is driven by the imperative of
maximizing fitness, so that animals move freely until they
cannot do any better in terms of fitness; that is, movement
to another patch would not increase or lower fitness.
McPeek and Holt (1992) showed that when individuals
dispersing among habitat patches differing in carrying ca-
pacity were allowed to evolve dispersal rates, the resulting
genotype that could exclude all others had a rate that varied
inversely with the carrying capacity of the habitat. This
produced a steady state spatial distribution with equal
numbers of individuals moving in each direction between
patches, or “balanced dispersal.” As noted by Diffendorfer
(1999), this can be viewed as an extension of the ideal free
distribution (IFD) at equilibrium (animals distribute
themselves in various patches proportionately to the
amount of resources available in each patch; Fretwell and
Lucas 1969). The IFD evens out the fitnesses of individuals
of the given population across the landscape, because
patches that are poorer in quality, due to lower resources
or higher predator concentrations, will have lower den-
sities of individuals. The IFD has seen success in describing
habitat selection (Lin and Batzli 2001; Pusenius and
Schmidt 2002) and the distributions of foraging animals
in the field (e.g., Harper 1982; Oksanen et al. 1995; Jones
et al. 2006) and in laboratory experiments (e.g., Milinski
1979; Regelmann 1984; Korona 1990). The IFD corre-
sponds to an evolutionarily stable strategy (ESS; a strategy
that if adopted by a population prevents invasion by an-
other population that is initially rare and uses a different
strategy; e.g., Cressman et al. 2004; Cantrell et al. 2007;
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Křivan et al. 2008), for which at steady state no individual
can improve fitness by moving to another patch. The pre-
diction of these sorts of models, at least where there is no
cost of movement, is that there is no net movement among
patches. Inevitably, animals will move among patches for
various reasons, but on each patch immigration will be
balanced by emigration.

Mathematically, the dynamics of such a population on
the landscape can be described by the general set of equa-
tions for N patches:

dPi p F(P , X)Pi i idt (1)
N

! (m P " m P), (i p 1, … , N),! ji j ij i
jp1
j(i

where Pi is the population size of the focal species on patch
i, is a vector representing the set of other species pop-X
ulations Xi on patch i, mijPi is the total movement from
patch i to patch j per unit time, and representsF(P , X)i i

the species interactions taking place on patch i. Additional
equations are used to describe the dynamics of each of
the other species, Xi, on each patch. These may be of
similar or alternative form to equation (1), although in
this article we assume species other than the focal species
do not move between patches. In equation (1), the rates
of movement that produce an IFD are not initially known
but are determined as follows. For an IFD, the movements
in and out of a patch are equal for each patch. The system
of equations thereby becomes much easier to solve because

N

(m P " m P) p 0, (i p 1, … , N), (2a)! ji j ij i
jp1
j(i

so that at the steady state,

F(P , X) p 0, (i p 1, … , N). (2b)i i

Thus, each of the N equations (2b), together with equa-
tions for all of the other species populations on each patch,
can be solved for the equilibrium Pis as well as the equi-
libria of the vector of other (nonmoving) species, , onXi

each patch. Equations (2a) are then used to solve for the
ratios of the movement coefficients, mij, that produce an
IFD.

The concept of the IFD as explicated above involves the
assumption that individuals move freely and without costs
between patches of habitat and distribute themselves such
that no individual would gain or lose fitness by exchanging
its place with an individual on another patch. This as-
sumption simplifies the analysis but is usually not war-
ranted. While movement among patches is a ubiquitous

trait of animals, there is usually a cost or loss to the pop-
ulation associated with movement. Movement typically
entails a loss of energy, it often increases the risk of pre-
dation or mortality due to exposure to the elements, and
individuals that move may also suffer the price of not
finding another suitable habitat patch (e.g., Yoder et al.
2004; Gibbs et al. 2010). A basic question is then how
such loss affects the strategy of movements if the individ-
uals are behaving according to an ESS.

The cost of movement as a factor in the IFD was in-
troduced by Rosenzweig (1974) and Charnov (1976) and
was considered subsequently by a number of mathematical
ecologists (Morris 1987; Kennedy and Gray 1993, 1997;
Åström 1994; Tregenza 1995; Matsumura et al. 2010).
Morris (1987) presented a concise approach for including
costs. Defining the fitness of populations on two patches
i and j as Wi and Wj, Morris (1987) followed Fretwell and
Lucas (1969) in first considering the fitness on a patch to
decline linearly with increasing population density at rate
b. Thus, with no cost to movement,

W p B " bN , (3a)i i i

W p B " bN , (3b)j j j

where Ni and Nj denote the population sizes on the patches
and Bi and Bj are constants representing the fitness levels
on each patch when densities are 0. If individuals are free
to move between patches, then population size on each
patch should be such that the fitness of individuals on
each patch is the same as on any other patch,

B " bN p B " bN , (4a)i i j j

which can be rewritten as

1
N p N ! (B " B ). (4b)i j i j( )b

If, however, the cost of moving from patch i to patch j is
not 0 but is , then individuals should move fromC 1 0ij

patch i to patch j until

W p W " C . (5)i j ij

Equation (4b) thereby becomes

1
N p N ! (B " B ! C ). (6)i j i j ij( )b

Morris (2004) considered movement in only one direction.
Extending the analysis to the case in which movement
occurs in both directions and is associated with a con-
comitant increase in the habitat quality of the patch being
left by Sij number of individuals, Åström (1994) showed
that
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Figure 1: Schematic of the within-patch interactions for two rep-
resentative patches i and j and the between-patch movement; andPi

are consumers, and are resources, and and are predators.P R R M Mj i j i j

Here, we assume that only the consumers can move between patches,
with rate from patch i to patch j and with rate from patch jm mij ji

to patch i.

b N ! B " B ! C " C b Sj j i j ij ji j ji
N p ! S " . (7)i ijb bi i

Åström (1994) noted that equation (7) violates some as-
sumptions of the IFD, as it implies that individuals will
move even when not moving achieves a higher fitness.

A basic deduction of these analyses is that there is no
further reason for individuals to move once the condition
of fitness equality is achieved, with or without costs of
movement. As Morris (1987, p. 380) noted, “Dispersing
individuals should stop traveling and settle in a habitat
whenever their fitness by doing so (minus emigration cost)
is greater than what they could have attained by not dis-
persing in the first place.” Thus, deterministically at least,
all movement should come to a stop. Stochastic move-
ments and movements of individuals without perfect in-
formation could continue, of course. We will not consider
these. However, continual movement of individuals be-
tween patches can be obligatory when the movement is
determined by environment (as in stream drift) or when
the long-term survival of populations has favored dispersal
evolutionarily by, for example, mitigating inbreeding or
enhancing postdisturbance recolonization (e.g., Gaines
and McClenaghan 1980; Hanski 1999, p. 2), reducing local
competition, and adapting numerous invertebrate, verte-
brate, and plant species to both ephemeral environments
(e.g., Roff 1974; Pusey and Wolf 1996; Ronce 2007) and
other terrestrial and aquatic environments (Bullock et al.
2002). Indeed, as Morris (1991) states, dispersal is a natural
consequence of natural selection. In nature, continual dis-
persal between patches is thus expected, even when pop-
ulations have reached equilibrium size (Bohanak and Jen-
kins 2003).

Here, we address the question of the distribution of a
population of foragers on a landscape to study the effects
of movement-associated costs when dispersal is obligatory.
Unlike Åström (1994), we do not assume a priori that
movement between patches is reciprocal but only con-
strain it to occur in at least one direction. Assuming om-
niscient foraging individuals, we determine the movement
rates in the opposite direction that give an ESS in the two-
patch tritrophic case (Y. Lou and C.-H. Wu, unpublished
manuscript) and that we suspect with support from nu-
merical investigation give an ESS in the two-patch bi-
trophic case and in our generalization to N patches. We
compare the resulting spatial pattern with that of balanced
dispersal, or IFD, when there is no travel cost.

We examine first a bitrophic chain in which the con-
sumer is the only mobile species, and then a tritrophic
food chain consisting of a focal consumer population, P,
that feeds on resources, R, and is preyed on by a top
predator, M, resident in a landscape of N patches (see fig.
1). Thus, the different effects of the resources and pred-

ators on movement strategies can be determined. In a
manner similar to previous studies (e.g., Morris 2004;
Morris and Mukherjee 2006), we assume that only the
consumers, P, can move between patches. Parameter val-
ues describing the nature of interspecific interactions
among all species are patch specific such that each species’
population size may differ between patches. One special
motivating case occurs in streams when there is forced
unidirectional movement (drift) of aquatic invertebrates
inhabiting a section of stream in which a series of poten-
tially different but hospitably deep pools (patches) are con-
nected by sections of inhospitably shallow riffle habitat
(Malmqvist 2002). For many stream invertebrates, down-
stream movement is an inevitable consequence of flow-
induced drift that is associated with many of the costs
mentioned above. Potentially compensatory upstream or
bidirectional movement occurs via active larval crawling
and adult flight (Malmqvist 2002). Drift-resistant fishes
are typically the dominant predators of invertebrates in
pools (Wooster 1994), where the often pool-specific pro-
duction of less motile algae and detritus serves as a re-
source, particularly for invertebrates with burrowing life
styles (Malmqvist 2002).

Model

We examine a system of an arbitrary number N of patches
distributed in space. On each patch i we consider a food
chain consisting of resources, denoted by Ri, a consumer,
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denoted by Pi, and a predator on the consumer, denoted
by Mi, in which the predator feeds only on the consumer
and the resources are exploited only by the consumer. We
allow the patches to be different; that is, values for the
parameters on each patch that describe the resource quality
and the interactions between the populations can be dif-
ferent. We assume that only the consumer populations Pi

travel between the patches with movement rates mij de-
noting the rate from patch i to patch j (see fig. 1).

We are interested in the case of fractional loss, ! !ij

, of individuals during movement from patch i to(0, 1)
patch j. The parameter !ij is closely related to Cij of the
other authors, which is the decrease in fitness in moving
from patch i to patch j. Because of that loss, as in Morris
(1987), after the fitness values between the patches balance,
it would be optimal for individual consumers not to travel
between the patches. However, we assume that there are
factors that create a need to disperse from patches. Fol-
lowing an approach recently used by DeAngelis et al.
(2007) to study the effects of population transitions be-
tween alternative physiological states, the set of equations
we use is as follows, where for ,i p 1, … , N

dPi p P(b a R " d " f M )i i i i i i idt

N N

" m P ! (1 " ! )m P , (8a)! !ij i ji ji j( ) [ ]jp1 jp1

dR Ri ip R r 1 " " a P , (8b)i i i i[ ( ) ]dt Ki

dMi p M (c f P " d ), (8c)i i i i midt

and denotes the growth rate of the resource on patch i,ri

its carrying capacity, the feeding rate of consumersK ai i

on resources, the feeding rate of predators on consumers,fi

the mortality rate of the consumer, the mortalityd di mi

rate of the predator, and the biomass conversion fac-b ci i

tors of the consumer and predator, respectively, and mij

the rate of movement by the consumer from patch i to
patch j. For simplicity, we assume logistic growth of the
resource and linear (Lotka-Volterra) functional responses
between the consumer and both its resource and its pred-
ator. Our analysis could be generalized to other functional
forms. We will use the term “fitness” hereafter to define
the per capita net growth rate; that is, the terms in the
square brackets multiplying in equation (8a).Pi

We wish to address whether a small number of members
of another population of consumers can invade a tem-
porally nonvarying habitat made up of patches that can
be modeled by system (8). To do this we extend model

(8) by introducing a second consumer population thatP̂i

also travels between the patches. We think of the original
population of consumers, , as a “resident” consumer ge-Pi

notype and as a potential “invading” mutant consumer,P̂i

with all parameters on each patch identical to the resident
consumer, except possibly some of its travel rates to or
from patch 1. In particular, we assume that cost of travel
between the patches is the same for the invader and the
resident.

We therefore respecify the set of equations for all species
to include the invader, , for , asP̂ i p 1, … , Ni

ˆdPi ˆp P (b a R " d " f M )i i i i i i idt

N N

ˆ ˆˆ ˆ" m P ! (1 " ! )m P , (9a)! !ij i ji ji j( ) [ ]jp1 jp1

dPi p P(b a R " d " f M )i i i i i i idt

N N

" m P ! (1 " ! )m P , (9b)! !ij i ji ji j( ) [ ]jp1 jp1

dR Ri i ˆp R r 1 " " a P " a P , (9c)i i i i i i[ ( ) ]dt Ki

dMi ˆp M (c f P ! c f P " d ). (9d)i i i i i i i midt

Observations from many empirical studies of stream
invertebrate dispersal (e.g., Elliot 2003) motivated us to
consider two basic scenarios. In the first scenario of forced
emigration from patch 1, we assume fixed positive density-
independent rates of dispersal m1j, , of con-j p 2, … , N
sumers from patch 1 to all of the other patches and fixed
nonnegative rates , , between all of them i, j p 2, … , Nij

other patches. Then we attempt to determine the optimal
rates , at which the resident consumers should dis-mi1, opt

perse from all the other patches back to patch 1. By the
“optimal rates” or “optimal strategy” we mean the rates

that the resident should use so that no otherm p mi1 i1, opt

genotype would be able to invade if they were identical
to the resident except for these rates of return to patch 1.
Therefore, in this first scenario (see fig. 2) the invading
population can have different immigration rates to patch
1, denoted , but must have the same emigration ratesm̂i1

from patch 1, .m̂ p m1j 1j

In the second scenario of forced immigration to patch
1, we assume instead that all the density-independent rates
of dispersal of consumers, , from all the patches to patchmi1

1 are fixed and then attempt to determine the optimal
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Figure 2: Schematic of a possible landscape of a habitat with five
patches in scenario 1 (forced emigration from patch 1). All patches
are downstream from patch 1. There are fixed positive emigration
rates from patch 1. The only differences between the resident and
the mutant are the immigration rates to patch 1; that is, needmi1

not be equal to . The solid lines indicate the bidi-m̂ , i p 2, 3, 4, 5i1

rectional movement rates between patch 1 and the other patches
assumed to always be positive. The dash-dotted lines indicate positive
movement rates between the other patches. Movement rates between
patches other than patch 1 need not be positive. Notice, for example,
that patch 5 is connected only to patch 1 and that there are only
unidirectional links between patches 2 and 3 and patches 2 and 4.
However, it is still possible to get from any patch to any other,
although it might involve an indirect path. We try to find the optimal
choices for the resident ’s rates , given that theP m , i p 2, 3, 4, 5i i1

mutant consumer ’s movement rates can differ from the residentP̂i

consumer’s rates by only its values for .m̂ , i p 2, 3, 4, 5i1

rates, , at which consumers should disperse fromm1j, opt

patch 1 to all of the other patches. In this case the invading
population can have different emigration rates from patch
1, denoted , but must have the same immigration ratesm̂1j

to patch 1, that is, .m̂ p mi1 i1

Scenario 1 is likely most relevant when patch 1 is up-
stream from all the other patches and scenario 2 when
patch 1 is downstream. These scenarios may seem similar,
so one might expect that the analysis in the first scenario
would be the same as that for the second scenario. How-
ever, there are asymmetries that cause these cases to be
different, as demonstrated by the computations in appen-
dix A in the online edition of the American Naturalist. In
each of the scenarios, our objective is to determine the
relationship between the immigration rates and emigration

rates between patch 1 and the other patches that gives the
optimal strategy for the resident population.

More formally, we make the following assumptions:
(H0): for all i;ˆm p m p 0ii ii

(H1): , and are all positive for allˆ ˆm , m , m m i ≥1i i1 1i i1

, and ; and2 m ≥ 0, i ≥ 2, j ≥ 2, i ( jij

(H2) (scenario 1: forced emigration): m̂ p m , i ≥ 1,ij ij

(see fig. 2); orj ≥ 2
(H2) (scenario 2: forced immigration): m̂ p m , i ≥ij ij

.2, j ≥ 1
Note that in both cases we assume only indirect inter-

actions between the resident and the invading consumers,
as mediated by the abundance of their shared resources
and their top predators.

Results

The Two-Patch Case

Before we present the general results for the relationship
between and for the two scenarios for N patches,m m1k k1

we show the results for the two-patch case. We consider
both the bitrophic food chain, in which the consumer is
at the top level ( for all i), and the tritrophic chain,M p 0i

in which the consumer is predated on as well ( ).M 1 0i

For scenario 1, we give the explanation of how to obtain
the optimal strategy in each case. The explanation for sce-
nario 2 is similar and hence omitted. We focus on the
coexistence equilibrium of equations (9), which we denote

, where we assume that all of the com-• • • • •ˆE p (P , P , R , M )
ponents of , , and• • • • • • •ˆ ˆ ˆP p (P , P ) P p (P , P ) R p1 2 1 2

are positive and that the components of• • •(R , R ) M p1 2

are all 0 in the bitrophic case and positive in the• •(M , M )1 2

tritrophic case. In each case, we can prove that there is
only one equilibrium of this form, and we can find explicit
expressions for the components by setting the right-hand
side of (9) equal to 0 and solving.

In the bitrophic case, where all of the components of
are set to 0, the components of this equilibrium in•M

scenario 1 are given by

d 2•R p , (10a)2 b a2 2

1
•R p [d ! m " m (1 " ! )(1 " ! )], (10b)1 1 12 12 12 21b a1 1

•1 (1 " ! )m r R12 12 1 1•P̂ p 1 "2 [ ( )ˆ(m " m ) a K21 21 1 1

•m r R21 2 2" 1 " , (10c)( )]a K2 2
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Figure 3: Diagram showing the consequences to the resident pop-
ulation and invader populations in scenario 1 as functions of their
two respective movement strategies, and , which form the X-ˆm m21 21

and Y-axes of the plot. When only one population chooses the op-
timal or evolutionarily stable strategy, , then only it survivesm21, opt

(vertical dashed line for the resident and horizontal solid line for the
invader). At the intersection, where both populations choose the
optimal strategy, the populations coexist. When neither population
chooses the optimal strategy, then there are three basic possibilities.
(1) Both strategies, and , are either less than or greater thanˆm m21 21

the optimal strategy, but one of the strategies is closer to the optimum
than the other. Then the population with the strategy farther from
the optimal strategy is excluded. (2) Both populations are either
greater than or less than the optimal strategy but are identical. In
this case the two populations coexist. (3) One population’s strategy
is greater than the optimal strategy and one population’s strategy is
less than the optimal strategy. Then the two populations coexist.

•1 (1 " ! )m r R12 12 1 1•P p 1 "2 [ ( )ˆ(m " m ) a K21 21 1 1

•m̂ r R21 2 2" 1 " , (10d)( )]a K2 2

•ˆm̂ P21 2•P̂ p , (10e)1 (1 " ! )m12 12

•m P21 2•P p . (10f)1 (1 " ! )m12 12

We assume that the carrying capacities of the resources,
and , are sufficiently large so that .•K K K 1 R , i p 1, 21 2 i i

In the tritrophic case, where all of the components of
are assumed to be positive, the components of this•M

equilibrium for scenario 1 are given by

(1 " ! )m d c f " d c f m12 12 m1 2 2 m2 1 1 21•P̂ p , (11a)2 ˆc c f f (m " m )1 2 1 2 21 21

ˆ(1 " ! )m d c f " d c f m12 12 m1 2 2 m2 1 1 21•P p , (11b)2 ˆc c f f (m " m )1 2 1 2 21 21

•ˆm̂ P21 2•P̂ p , (11c)1 (1 " ! )m12 12

•m P21 2•P p , (11d)1 (1 " ! )m12 12

a K a d1 1 1 m1• • •ˆR p K " (P ! P ) p K 1 " , (11e)1 1 1 1 1( )r r c f1 1 1 1

a K a d2 2 2 m2• • •ˆR p K " (P ! P ) p K 1 " , (11f)2 2 2 2 2( )r r c f2 2 2 2

1
• • • • •M p [b a R P " d P " m P1 1 1 1 1 1 1 12 1•f P1 1

•! (1 " ! )m P ], (11g)21 21 2

1
• • • • •M p [b a R P " d P " m P2 2 2 2 2 2 2 21 2•f P2 2

•! (1 " ! )m P ], (11h)12 12 1

Here we assume that , so that •a d ! r c f , i p 1, 2 R 1i mi i i i i

and that the carrying capacities are0, i p 1, 2 K , i p 1, 2i

sufficiently large so that •M 1 0, i p 1, 2.i

In the bitrophic case, we find the optimal strategy by
determining the value of that results in zero valuesm 21

for the components of the invader population at this co-

existence equilibrium. In particular, we set in equa-•P̂ p 02

tion (10c) and solve for . Then from equation (10e),m 21

it follows that as well. The resulting optimal strat-•P̂ p 01

egy for the resident in the bitrophic case for scenario 1 is
given by

•a r K (K " R )2 1 2 1 1m p (1 " ! )m . (12)21, opt 12 12 •a r K (K " R )1 2 1 2 2

Using a similar analysis, the resulting strategy for the
resident in the bitrophic case for scenario 2 is

•a r K (K " R )1 2 1 2 2m p (1 " ! )m . (13)12, opt 21 21 •a r K (K " R )2 1 2 1 1

In the tritrophic case, in scenario 1 the optimal move-
ment strategy for the resident is obtained by setting

in equation (11a) and solving for to obtain•P̂ p 0 m2 21

d c fm1 2 2m p (1 " ! )m . (14)21, opt 12 12 d c fm2 1 1

A similar analysis gives the optimal strategy in scenario
2 for the tritrophic case as
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d c fm2 1 1m p (1 " ! )m . (15)12, opt 21 21 d c fm1 2 2

In figure 3 we illustrate the “landscape” of results of
resident and invader competition. These results were first
surveyed with computer simulations of equations (9), per-
formed using Matlab (version R2007a), in both the bi-
trophic and tritrophic cases. It should be noted that these
simulations are very slow to converge when the movement
rate coefficients of resident and invader are close. The
results illustrated in this figure were then analytically
proved by Y. Lou and C.-H. Wu (unpublished manuscript)
for the tritrophic case using a Lyapunov function ap-
proach. They prove that a coexistence equilibrium exists
if and only if either orˆ ˆm ! m ! m m !21 21, opt 21 21

, and whenever a coexistence equilibrium ex-m ! m21, opt 21

ists, it is globally asymptotically stable (i.e., it is stable and
all solutions with positive initial conditions converge to
this equilibrium). They also show that when no coexistence
equilibrium exists; that is, if orm̂ ! m ≤ m21 21 21, opt

, then the boundary equilibrium withˆm ≤ m ! m21, opt 21 21

the invader absent (but the other components positive) is
globally asymptotically stable. However, if ˆm ! m ≤21 21

or , then the boundary equilib-ˆm m ≤ m ! m21, opt 21, opt 21 21

rium with the resident absent (but all other components
positive) is globally asymptotically stable. In scenario 1,
our model thus predicts that when the resident uses our
calculated value of , it excludes the invader unlessm 21, opt

the invader also uses . Hence, correspondsm m21, opt 21, opt

to an ESS. When the resident does not use , otherm 21, opt

outcomes can also occur depending on the relative values
of , , and .ˆm m m21 21 21, opt

The predictions of whether the two populations coexist
or one excludes the other, based on the relative values of
the movement rates, are also illustrated for scenario 1 in
the tritrophic case in figure 4. When the resident uses the
rate given by equation (14), the invader is always elimi-
nated. However, if the resident does not use this rate, there
is coexistence if either the resident uses a movement rate
that is slower and the invader uses a rate that is faster than
the optimal rate or vice versa. Since it is not likely that
the resident can use the exact optimal rate if the rate the
mutant uses is very close to the rate the resident uses, it
is more likely that both the resident and the invader use
rates that are either both faster than the rate given by
equation (14) or both slower than this rate. In this case,
it is the population that chooses the rate that is closer to
the rate given by equation (14) that survives and excludes
the other population. Thus, in the two-patch case, assum-
ing that neither population can ever use the exact optimal
rate, our model predicts that attempted invasion by a rare
but very similar mutant population more likely results in
total elimination of either the resident population or the

invading population, unless the mutation results in a sig-
nificantly different movement rate. For example, if the
resident’s actual movement rate is below the optimum
(hence not at the ESS), the mutant invader’s movement
rate would have to be large enough to exceed the optimal
rate for coexistence to occur.

Using the parameter values in table 1, figure 4 shows
how, in scenario 1, the resident and invader biomasses at
equilibrium depend on . The residents’ biomasses (m̂ P21 1

and on patches 1 and 2) are shown using thick andP2

thin solid lines, and the invaders’ biomasses ( and )ˆ ˆP P1 2

using thick and thin dashed lines, respectively. Note that
either and are both 0 (and the curves overlap) or areP P1 2

both positive. Similarly, and are either both positiveˆ ˆP P1 2

or both 0. All parameters for and are identical (i.e.,ˆP P1 1

). The only possible differences between andˆm p m P12 12 2

are the movement rates and . When these move-ˆ ˆP m m2 21 21

ment rates are also equal (indicated by the vertical line),
then on each patch both populations are identical (except
for their labels), and so there is a continuum of equilib-
rium values and the outcome depends on the initial con-
ditions. For the parameter values in table 1, m p21, opt

, and so we consider three cases: A,0.003740 m p21

; B, ; and C,0.0037 ! m m p m m !21, opt 21 21, opt 21, opt

. In A, is fixed below . Whenm p 0.0038 m m21 21 21, opt

, the invader is excluded by the resident. Whenm̂ ! m21 21

(the vertical line), the populations are identical.m̂ p m21 21

When , the invader is successful andˆm ! m ≤ m21 21 21, opt

excludes the resident. When , the resident andm̂ 1 m21 21, opt

the invader coexist. In B, ; that is, the resi-m p m21 21, opt

dent chooses the optimal strategy, and the invader can
never invade (remains at zero biomass) except if it chooses
the identical strategy (the vertical line). In C, is fixedm 21

above . When , the resident and theˆm m ! m21, opt 21 21, opt

invader coexist. When , the invader isˆm ≤ m ! m21, opt 21 21

successful and excludes the resident. When , them̂ p m21 21

populations are identical. When , the invader ism̂ 1 m21 21

excluded by the resident.
It can further be shown that the optimal strategy

is a decreasing function of eachm p m (! , ! )21, opt 21, opt 12 21

of the costs of traveling between the patches, and varying
the costs can change the outcome. We demonstrate this
in scenario 1 for the tritrophic case in figure 5. We fix

and allow the cost to vary (where we assumem̂ ( m !21 21

that ). Since , given by equation (14),! p ! p ! m12 21 21, opt

decreases linearly as a function of , it is the size of that! !
determines the relative values of , andˆm , m m (!)21 21 21, opt

and hence, whether or not invasion is successful, and if
successful, whether the invader excludes the resident or
there is coexistence.
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Figure 4: Dependence of equilibrium population sizes on con-
sumer’s migration rate for the two-patch tritrophic case of sce-m̂21

nario 1. Resident consumer’s population sizes ( and ) shownP P1 2

using thick and thin solid lines for patches 1 and 2, and invader’s
( and ) using thick and thin dashed lines, respectively. Noteˆ ˆP P1 2

that and are either both zero or both positive. Similarly, ˆP P P1 2 1

and are either both 0 or both positive. All parameters forP̂ P2 1

and are identical (see table 1) except for and . Invadersˆ ˆP m m1 21 21

and residents are identical when (indicated by the ver-ˆm p m21 21

tical line in each graph) such that a continuum of equilibrium
population sizes is feasible, with outcome dependent on initial
conditions. Three cases for which are illustrated:m p 0.0037421, opt

A, ; B, ; and C,m p 0.0037 ! m m p m m ! m p21 21, opt 21 21, opt 21, opt 21

. Notice the transition from a boundary equilibrium with0.0038
one of the populations absent to the coexistence equilibrium when
the invader chooses the optimal strategy, that is, when m̂ p21

.m21, opt

The N-Patch Case

Next we consider N patches, restricting attention to the
tritrophic case. Because finding explicit expressions for the
components of the coexistence equilibrium (the equilib-
rium with all components positive) for model (9) is not
possible in the more general case of N patches (as it was
for the two-patch case), we must use a different approach.
In this case, we are instead able to find explicit expressions
for the coexistence equilibrium of model (8). In order to
proceed, we first introduce some notation relating this
coexistence equilibrium of model (8) to a boundary equi-
librium (an equilibrium with some components zero) of
system (9), the equilibrium with the invader absent but
all other components positive. Let de-∗ ∗ ∗ ∗E p (P , R , M )(8)

note a coexistence equilibrium solution of model (8),
where , ,∗ ∗ ∗ ∗ ∗ ∗ ∗P p (P , … , P ) R p (R , … , R ) M p1 N 1 N

, and∗ ∗ ∗ ∗ ∗(M , … , M ) P 1 0, R 1 0, M 1 0, i p1 N i i i

. In this case (once the parameters are all fixed)1, … , N
there is a unique coexistence equilibrium solution with
components given by

dmi∗P p , (16a)i c fi i

ai∗ ∗R p K 1 " P , (16b)i i i( )ri

N1∗ ∗M p b a R " d " m (16c)!i i i i i ij{f jp1i

N ∗Pj! (1 " ! )m .! ji ji ∗[ ]}Pjp1 i

Here, we assume that so thata d ! r c f , i p 1, … , Ni mi i i i

and that the carrying capacities, , are sufficiently∗R 1 0 Ki i

large so that . If we set∗ ∗ˆM 1 0, i p 1, … , N P pi

, then if is a coexistence equilibrium of∗¯(0, … , 0) p 0 E (8)
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Table 1: Parameter values used to illustrate the two-patch model

! p .15 a1 p .005 c1 p c2 p .5 f1 p .000050
m12 p .01 a2 p .006 dm1 p .0030 f2 p .000055
K1 p K2 p 100.0 b1 p b2 p .5 dm2 p .0075
r1 p r2 p 3.0 d1 p d2 p .1

Figure 5: Since is a decreasing function ofm p m (!) !21, opt 21, opt

when are fixed, it is the size of the cost that determinesˆm ( m !21 21

whether invasion is successful. This figure shows the biomasses at
the stable equilibrium in the tritrophic case for scenario 1 for the
parameter values in table 1 for the resident ( and , thick andP P1 2

thin solid lines, respectively) and the invader ( and , thick andˆ ˆP P1 2

thin dashed lines, respectively) on the two patches as functions of
the cost when . The shaded re-ˆ! 0.003739 p m ! m p 0.00374121 21

gion indicates exclusion of the resident by the mutant invader.

model (8), it follows that is a bound-∗ ∗ ∗ ∗¯E p (0, P , R , M )
ary equilibrium of model (9).

Motivated by the approach given for the two-patch case,
we aim to find movement rates under assumptionmj1, opt

(H2, scenario 1) or under (H2, scenario 2),m j p1j, opt

, so that if it were possible to find the components2, … , N
of the coexistence equilibrium of model (9), we could set
the invader components in this equilibrium equal to 0 and
solve for the appropriate movement rates, to obtain the
boundary equilibrium of model (9), (just as we did in∗E
the two-patch case). (Fig. 4A, for example, shows that in
the two-patch case, when , the coexistencem p m21 21, opt

equilibrium and the boundary equilibrium with the in-
vader absent coalesce.) When the rates are chosen so that
these equilibrium points meet this way, from standard
bifurcation theory it follows that the “invasion matrix,”
the submatrix of the “community matrix” obtained when
model (9) is linearized about the boundary equilibrium

, must have a zero eigenvalue. In appendix A we show∗E
that the community matrix has block matrix structure,
with one block corresponding to the invasion matrix tell-
ing us about whether is attracting or repelling with∗E
respect to the invading population. We therefore look for
the values of the movement rates for which the invasion
matrix has one zero eigenvalue and all other eigenvalues
have negative real parts. This approach yields the move-
ment rates

∗P1m p (1 " ! )mi1, opt 1i 1i ∗Pi (17a)

N1 (1 " ! )(1 " ! )ij j1∗ ∗! (1 " ! )m P " m P! ji ji j ij i∗ [ ]P (1 " ! )jp2i i1

in scenario 1. Similarly, in scenario 2 we obtain the move-
ment rates

∗Pim p (1 " ! )m1i, opt i1 i1 ∗P1 (17b)

N1 (1 " ! ) (1 " ! )ij ji∗ ∗! m P " m P .! ij i ji j∗ [ ]P (1 " ! ) (1 " ! )jp21 1j 1i

In the two-patch case ( ), substituting the ex-N p 2
pressions given for in equation (16a), the rate∗P , i p 1, 2i

given by equation (17a) is identical to the one in equation
(14), and the rate given by equation (17b) is identical to

to the one in equation (15). In the N-patch case, if
whenever or , the formulas in (17) givem p 0 i 1 2 j 1 2ij

rates similar to the rates given in the two-patch case, since
the summation term vanishes.

We caution the readers that formulas (17) are derived
under the assumption that these rates, once determined,
will turn out to be positive for all . In ad-i p 2, … , N
dition, we assume that, if we were considering only system
(8) (the system without any invader) and the resident uses
these rates, has all components positive and attracts∗E (8)

all solutions with positive initial conditions with respect
to system (8). If not, this method fails to determine
whether or not there is an ESS. In particular, if any rate
given by equations (17) is negative, this is clearly mean-
ingless, and the method is inconclusive. We conjecture that
when these additional assumptions hold, the movement
rates in equations (17) give an ESS.

In the three-patch case, numerical simulations in Matlab
and Fortran and exploration of the model using the nu-
merical continuation and bifurcation software AUTO
through the XPPAUT interface (Ermentrout 2002) support
this conjecture. Our numerical investigations indicate that
if the resident wishes to avoid invasion, it is advisable to
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Table 2: Selected analytic and numerical models, with the number of patches and trophic levels, and predictions regarding the
effects of travel costs on possible deviations from the ideal free distribution (IFD)

Model type
No.

patches

No.
trophic
levels

Direction of
movement Effect of travel cost Reference

Numerical (IBM) 2 2 Bidirectional Deviation from IFD Regelmann 1984
Numerical (IBM) N 2 Bidirectional Deviation from IFD for

high costs
Bernstein et al. 1991

Analytical 2 2 Unidirectional (toward
richer patch)

Deviation from IFD for
high costs
(overmatching)

Morris 1987; Ken-
nedy and Gray
1993

Analytical 2 2 Bidirectional No deviation from IFD Åström 1994
Analytical 2, N 2 Bidirectional Approaches IFD for

higher costs
Matsumura et al.

2010
Analytical and

numerical 2, N 2, 3 Bidirectional Deviation from IFD This article

Note: See the text for further discussion of some of these models. IBM p individual-based model.

use rates as close as possible to the rates given by equations
(17). A typical example is described in appendix B in the
online edition of the American Naturalist, where numerical
experiments I–VI are described. In experiments I–III, the
residents’ rates were both chosen very close to but not
equal to the optimal rates. At least one of the invaders’
rates was chosen on the same side of the optimal rate as
the residents’ rate but even farther from the optimal rate.
Either exclusion of the invader by the resident or coex-
istence of both invader and resident populations resulted.
In experiments IV and V, both the resident and the invader
used the same optimal rate for one of their rates. The
outcome was similar to the outcome in the two-patch case
illustrated in figure 4; that is, the outcome depended on
the relative values of the other rates in the same way as
in the two-patch case. Finally, in experiment VI, we chose
both residents’ rates as the optimal rates and at least one
of the invaders’ rates as nonoptimal. In this case, when
the invaders’ rates were close to the residents’ rates, con-
vergence was too slow to determine whether the resident
was excluding the invader or there was coexistence of both
the invader and the resident but with the invader at an
extremely low population size.

Here we define the fitness on patch i to be b a R "i i i

, that is, the per capita net growth rate on thatd " f Mi i i

patch. Our analysis also predicts the effect of the cost of
movement between patches on the expected fitness of the
resident on the different patches, when the resident uses
the optimal movement strategy in the absence of the in-
vader. (For the explicit formulas for the fitness on each
patch, see app. A, lemma 5 in the case of scenario 1 and
lemma 4 for scenario 2.) In the two-patch case, in scenario
1 the fitness of the resident is always positive on patch 1
and zero on patch 2, whereas in scenario 2 it is always
zero on patch 1 and positive on patch 2. In both cases,

when it is positive, the fitness is equal to (1 " ! )(1 "12

(where and in scenario 1 and! )m i p 1 j p 2 i p 221 ij

and in scenario 2) and is hence a decreasing functionj p 1
of the cost of travel between patches. In the N-patch case,
the fitness of the resident on patch 1 is still always positive
in scenario 1 and always zero in scenario 2. However, when
there are more than two patches (fig. 2), the situation is
more complicated. The expected fitness on any patch be-
sides patch 1 can be positive, zero, or even negative, de-
pending on the relative costs of travel between the patches
and on which patches are connected. Therefore, both
patches that are effectively net “sources” and patches that
are effectively net “sinks” can emerge when the movement
rates of a population among patches is optimal. This result
has some relationship to the observation of Holt (1997)
that one reason that sink populations may persist is be-
cause of a departure from a “free” distribution; that is,
some individuals are constantly being forced from high-
quality patches into low-quality patches. On the other
hand, in the special case that the costs of travel between
all of the patches are positive and the same (i.e., ! pij

for all ), then the expected fitness on all of! ! (0, 1) i, j
the patches besides patch 1 is nonnegative in both sce-
narios 1 and 2. Examples of when it is possible to have
negative fitness on a patch in the case of a three-patch
habitat can be easily constructed based on lemma 5 for
scenario 1 or lemma 4 in scenario 2 (see app. A). In
particular, in scenario 1, the only way that patch 2 can
have negative fitness is if the rate and the costsm 1 023

of travel between patches satisfy (1 " ! ) ! (1 "21

. Hence, to have negative fitness on patch 2,! )(1 " ! )23 31

it must be possible to travel directly from patch 2 to patch
3, and the cost of direct travel from patch 2 to patch 1
must be larger than the cost of direct travel both from
patch 2 to patch 3 and from patch 3 to patch 1; that is,
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both and must hold. For example, if! 1 ! ! 1 !21 23 21 31

and , then patch 2 would have! p 0.03 ! p ! p 0.0121 23 31

negative fitness, as in the example discussed in appendix
B. Finally, it should be noted that as , the predicted! r 0ij

strategies reduce to the strategies for the IFD, and the
expected fitness of the resident on all of the patches ap-
proaches zero.

Discussion

Previous studies that assumed movement between patches
despite travel costs used a variety of modeling approaches
and assumptions and made different predictions about the
effects of these costs on movement and population dis-
tribution patterns. Some individual-based simulations
have predicted a decrease in patch switching (Regelmann
1984; Bernstein et al. 1991; Cezilly and Boy 1991). Ken-
nedy and Gray (1993) and Morris (1987) analytically pre-
dicted that with greater travel costs there would be greater
skewing of the distribution toward richer patches than the
IFD would predict, as individuals would be attracted uni-
directionally toward the richer patches. Matsumura et al.
(2010) predicted that the distribution of suboptimal for-
agers would approach that predicted by the IFD with in-
creasing traveling costs, as the numbers of individuals leav-
ing rich patches would decline faster than those leaving
poor patches. In table 2 we list the conclusions of a few
selected models with respect to possible deviations of pop-
ulation distributions from the IFD.

Our approach and predictions differ from the others in
a few ways. Differences in habitat quality do not play a
crucial role in our analysis, since we assume that a pop-
ulation is self-sustaining on each patch (when there is no
travel between patches), at least under the normal steady
state conditions of our analysis. We start with the as-
sumption that movement occurs either because of selective
pressures such as outbreeding and recolonization or due
to environmental forcing. However, it should be noted
that our models take a different viewpoint from traditional
metapopulation models in that they do not emphasize
extinction and recolonization of patches. We consider two
scenarios. In both we assume that there is one special
patch, which we call patch 1. For convenience, in scenario
1 we call patch 1 the “upstream” patch, from which there
is forced emigration to all other patches, and we call it
the “downstream” patch in scenario 2, toward which there
is forced immigration from all the other patches. We as-
sume that these rates and the rates between any of the
other patches (besides patch 1) are fixed at values out of
the control of the consumer and are the same for both
the resident and a potential invader. The only difference
between the resident population and a potential invading
population is then the return rates to patch 1 in scenario

1 and the emigration rates from patch 1 to all of the other
patches in scenario 2, and we assume that these rates are
the only rates under the control of the consumer popu-
lation. We investigated whether there is a strategy that the
resident consumer can choose so that it cannot be invaded
by a small number of consumers that choose different
rates, that is, whether there is an evolutionarily stable strat-
egy (ESS). We allow movement rates between patches other
than patch 1 to be positive or zero. (Note that since patch
1 is connected bidirectionally to all other patches, it is
always possible to get from any patch to any other patch,
although this might involve an indirect path, e.g., through
patch 1.)

Our analysis produced new results that differ in key
respects from earlier results on the movement patterns
among habitats in which there are traveling costs. A major
new result of our analysis is the prediction that, even if
the cost is very high, for an ESS to exist in the two-patch
case, there must be movement from downstream to up-
stream patches at the positive rates given by equations
(14) or (15). This result applies when only the consumer
population disperses, and it holds even if individuals have
a nearly 100% probability of not surviving a return to the
upstream patch. In the two-patch tritrophic case, the rates
we derive are proved analytically (see Y. Lou and C.-H.
Wu, unpublished manuscript) to give an ESS. In the two-
patch bitrophic case and in the N-patch case with ,N 1 2
when all of the optimal movement rates given by our
formulas (17) are positive, numerical investigations (using
both simulations and bifurcation continuation software)
indicate that our optimal rates also give an ESS. However,
under our assumptions, when there are more than two
patches, the formulas that we derive for the optimal return
rates might predict one or more of the rates is zero or
negative, violating an assumption under which they were
derived. In that case, the rates we derive are not justified
and, if negative, are meaningless in any case. Hence, in
the case of more than two patches, there may or may not
be positive return rates that give an ESS.

It should be kept in mind that our modeling approach
applies most appropriately to population dynamics on a
long enough timescale for populations to reach equilib-
rium. Other models of movement are typically relevant to
shorter timescales, as are virtually all models of habitat
selection. Over shorter timescales, in particular, at the
timescale of individual movement, foraging theory has at-
tempted to calculate the quantitative features of move-
ments between patches, given levels of resources on
patches and the time, and hence energetic costs, of move-
ment between patches (e.g., Cowie 1977; Stephens and
Krebs 1986). Our results indicate that despite the fact that
optimal foraging theory deals with nonequilibrium situ-
ations in which the forager is depleting local patch re-
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sources, movement in both the short-term individual and
long-term population cases respond to some similar fac-
tors. Our equations for in the two-patch case aremji, opt

proportional to , indicating that the return move-(1 " ! )ij

ment rate from the downstream to the upstream patch
decreases (or, equivalently, the mean time that an indi-
vidual stays on a patch increases) with increasing loss dur-
ing movement. Charnov (1976), looking at the scale of an
individual forager, showed (see his eq. [2] and his fig. 3)
that the time that a forager should optimally spend on a
given patch increases with increasing energetic cost of
movement between patches. Therefore, there is consis-
tency between our model results for long-timescale pop-
ulation dynamics and the short-timescale foraging results
of Charnov (1976).

Our results can also be compared to more recent theory
of individual movement between patches, which shows the
evolution of density dependence of the movement rate
coefficients. For example, Travis et al. (1999) modeled
competing dispersal strategies using an individual-based
model and showed that dispersal strategies always evolved
for which the probability of dispersal (equivalent to our

) increased as a function of local population density,mji, opt

at least for sufficiently high densities. Importantly, our
model results according to equations (17) are quite dif-
ferent in this case. Rather than being dependent on only
the local population size ( ), the optimal movement rate∗Pi

coefficient, , in the two-patch case is proportional tomji, opt

the ratio , the equilibrium ratio of the receiving and∗ ∗P /Pi j

the source populations.
Our model confirms the prediction of other studies, for

example, that of Diffendorfer (1999), that movement with-
out cost should result in balanced dispersal with the equi-
librium population density on each patch the same as it
would be without any movement. However, a second ma-
jor result of our study is that our analysis predicts that
the ESS for movement with cost does not produce bal-
anced dispersal. With cost, the fluxes into and out of the
upstream patch are not equal, and hence the equilibrium
population density on each patch is not the same as it
would be without any movement. We show that this asym-
metry in the rates between two given habitat patches de-
pends on movement costs and can occur even if the two
habitat patches are entirely similar. Therefore, our model
predicts deviations from balanced dispersal, though not
for any reasons regarding differences in the quality of
patches, a central feature of earlier work on this topic. Our
results indicate that in the two-patch case, because of the
imbalance in movement rates, individual fitness is higher
on the upstream patch than on the downstream patch.
The imbalance is necessary to motivate individuals to ac-
commodate the cost of movement from the downstream
patch. Therefore, the loss rate from travel breaks the sym-

metry of the IFD and leads to fitness differences between
the two patches. This would occur even if all parameters
on the two patches were identical. This may not be too
surprising, because movement from the upstream patch
is forced, and the individuals that move from the upstream
patch lose fitness. The system thus does not represent an
IFD. What is perhaps surprising, however, is that for N-
patch systems, if optimal movement rates are used, fitness
may be positive on some patches, thus making them ef-
fective “sources,” and negative on other patches, thus mak-
ing them effective “sinks.” For example, in scenario 1 in
the three-patch case, such sinks emerge if it is possible to
get back to patch 1 indirectly via the other patch, provided
that the cost of direct movement back to patch 1 is greater
than the cost of travel to the other patch, as well as the
cost of travel from the other patch to patch 1. This is a
third major result of our study.

Our analysis extends beyond the ESS ( )m p m21 21, opt

to the more general case in which a species’ movement
strategy is suboptimal, (e.g., in the two-patch case when

or ). The analysis summarizedm ! m m 1 m21 21, opt 21 21, opt

in figure 3 regarding competition of two movement strat-
egies showed the following: if the resident and invader
strategies are both either greater or smaller than ,m 21, opt

then the one that is closest to will exclude the other.m 21, opt

If one is greater and one is smaller than , then them 21, opt

two strategies can coexist. An interesting implication of
these results is that invasion by a mutant strategy is most
likely to result in an extinction of either the invader or
the resident rather than coexistence. This is because mu-
tations tend to result in small changes, so that mutations
great enough to result in a jump to a new strategy on the
other side of are likely to be rare. Although a mu-m 21, opt

tation leading to coexistence is unlikely, an invading ge-
notype from outside the local area could more likely have
a movement strategy on the other side of . Fromm 21, opt

the numerical investigations in appendix B in the three-
patch case, coexistence of the resident and a similar mutant
appears to be even more unlikely.

To the extent that “background” rates of dispersal in
one direction are a common feature of natural systems,
our results have important empirical implications. Forced
unidirectional dispersal rates have been demonstrated in
many invertebrate and vertebrate aquatic organisms, in-
cluding in both marine and freshwater habitats (Bohonak
and Jenkins 2003; Macneale et al. 2005; Shanks and Eckert
2005; Lowe et al. 2008). In some cases, drift is the main
means of transport. For example, many marine, coastal
species of fishes and crustaceans have been shown to drift
unidirectionally during larval stages, following ocean cur-
rents (Shanks and Eckert 2005). Our results, therefore, may
have particular implications for return rates in marine
environments and thus for marine reserve design.
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In other cases, drift may be accidental, due to organisms
being caught in air or water currents. In the case of aquatic
insects, the passive downstream drift caused by one-
directional flow of water is a common pattern, and Müller
(1954, 1982) hypothesized that insects compensate for
downstream drift by a tendency for the adult forms to fly
upstream to oviposit. While empirical studies have not
conclusively supported the hypothesis that upstream
movement of adults compensates for the loss, Anholt
(1995) proposed that such upstream movement may not
be necessary, as density dependence occurs in the aquatic
stages of many insects, and drift of individuals from a
habitat patch may be compensated for by an increase in
the survival rate of those remaining on the patch. Kopp
et al. (2001), nevertheless, showed through invasion anal-
ysis that even in such cases, upstream movement should
be favored, because an insect genotype in which losses to
drift from upstream to downstream patches are exactly
compensated for by upstream movement will exclude any
genotype for which this is not true. The results of Kopp
et al. (2001) are precisely what are expected when there
are no losses in movement between patches, so that an
IFD can occur for the population on the patches. Our
analyses apply to the more general situation in which mor-
tality losses occur during movements in both directions
between patches. Our results imply that a genotype having
an upstream movement rate given by equation (14) or
equation (15) will exclude other genotypes. Thus, in a
stream system in which mortality losses occur in the down-
stream drift and upstream flight of adults, we expect that
the reverse migration does not balance the losses caused
by drift.

Our assumption that movement between patches, at
least in one direction, is necessary violates the basic as-
sumption of “free” in IFD theory. This was also noted by
Åström (1994) for his model. Our results constitute a re-
placement of the traditional IFD for the case in which
movement entails costs. These results need to be taken
into account in the study of metapopulations and the evo-
lution of dispersal given their implications for conserva-
tion and reserve design (Noon and McKelvey 1992; Has-
tings and Harrison 1994; Husband and Barrett 1996; Travis
and Dytham 1998; Hanski 1999; Fagan and Lutscher
2006).

The forced unidirectional movements are long-term
constants in our model. We realize that in real situations
there are seasonal variations in movement and fluctuations
in environmental conditions and populations, in response
to which reciprocating migrations might occur (Morris et
al. 2004). It is possible that the magnitudes of these effects
may overshadow those of forced unidirectional flows on
short timescales. Other studies have considered movement
between patches despite travel costs and have made a num-

ber of different predictions about the effects of these costs
on movement and distribution patterns.

Many of the predictions of our models appear quali-
tatively consistent with patterns observed in nature. Ro-
bust empirical tests will likely be challenging in all but the
simplest experimental systems. In particular, strong em-
pirical tests of our predictions regarding balanced disper-
sal, the possibility of negative fitness on patches, and the
IFD must include forced dispersal with cost. Needed are
empirical measures of the bidirectional rates of movement
and movement-associated mortality at temporal scales per-
tinent to the dynamics of the metapopulation. Laboratory-
based metapopulations (e.g., Vasseur and Fox 2009) may
serve this function by providing a means to manipulate
movement and mortality rates independently. Neverthe-
less, the development of additional and alternative mech-
anism-specific models, for example, individual-based
models, will also be necessary to move beyond simplistic
pattern-matching comparisons.
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Appendix A from D. L. DeAngelis et al., “The Effect of Travel Loss on
Evolutionarily Stable Distributions of Populations in Space”
(Am. Nat., vol. 178, no. 1, p. 15)

Calculation of the Optimal Movement Coefficients of an Evolutionarily Stable
Strategy
To understand the stability of any such equilibrium , , a standard approach is to determine the* * * *¯E (0, P , R ,M )
real parts of the eigenvalues of the matrix J, the Jacobian matrix for the system (9) evaluated at this equilibrium
solution. If we let denote the Jacobian matrix for system (8) evaluated at , J has the form*J E(8) (8)

ˆ! "D 0
# $J p ,* J% &(8)

where denotes the matrix with all components equal to 0, the components of the matrix D are0̂ N # 3N N # N
given by

ˆ N(1! ! )m i ( jji jiD p ,ij * * ˆb a R ! d ! f M ! m i p j!i i i i i i ij{
jp1

for , where the asterisk indicates a matrix with components that are not involved in ouri, j ! {1, … , N} 3N # N
discussion below.
Because of the special structure of the matrix, it follows that any eigenvalue must satisfyl

det (J ! lI ) p det (J ! lI ) det (D ! lI ) p 0,4N (8) 3N N

where denotes the identity matrix for any positive integer m.I m # mm

In this appendix, we focus our discussion on the matrix D, usually referred to as the invasion matrix. Since
we are assuming (H2) (see text), it follows that the nonnegative matrix with components is irreducible. If cˆ(m )ij
is a large enough positive constant so that the diagonal entries of are positive, and if is anyD p D " cI lN

eigenvalue of with associated eigenvector , then is an eigenvalue of D with the same eigenvector. SoD v l ! c
the following is a consequence of the Perron-Frobenius theorem (Horn and Johnson 1999):

• The matrix D has a dominant eigenvalue, denoted by , such that is real, and the real parts of alll l1 1

other eigenvalues are strictly less than .l1

• Both the right and the left eigenspace associated with is one-dimensional. In particular, all of thel1

components of the left and right eigenvectors corresponding to can be chosen to be positive, and forl1

all eigenvectors of other eigenvalues there exists a component that is not positive.
• is a simple root of the characteristic polynomial of D. Using the implicit function theorem, it followsl1

that is a smooth function of and , .ˆl m m i, j ≥ 11 ij ij

In order to justify the rates given in equations (17), we establish two preliminary results. For every ,2 ≤ i ≤ N
set , where T denotes the transpose.TV p (D , … , D )i i2 iN

Lemma 1. Suppose that for every . If for every , are linearlym̂ p m i, j m 1 0 2 ≤ i ≤ N V , … , Vij ij 1i 2 N

independent and thus form a basis of .N!1!
Proof. Let denote the matrix obtained by removing the first row and first column(D ) (N ! 1)# (N ! 1)ij i, j≥2

of matrix D. We claim that if for every , then is invertible. To see this, since the off-m 1 0 2 ≤ i ≤ N (D )1i ij i, j≥2
diagonal entries of are all nonnegative, by the Perron-Frobenius Theorem there exists some eigenvalue(D )ij i, j≥2
of , denoted by , that is real, and the real parts of all other eigenvalues are less than or equal to .(D ) h hij i, j≥2 1 1
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Moreover, has a left eigenvector with all nonnegative components, denoted ; that is,h (v , … , v )1 2 N

(v , … , v )(D ) p h (v , … , v ). (A1)2 N ij i, j≥2 1 2 N

Recall that when , zero is an eigenvalue of D with as a right eigenvector.*ˆ ˆ(m , … , m ) p (m , … , m ) P12 1N 12 1N

Hence,

* * T * T(D ) (P , … , P ) p !P ((1! ! )m , … , (1! ! )m ) , (A2)ij i, j≥2 2 N 1 12 12 1N 1N

where denotes the transpose of .* * T * *(P , … , P ) (P , … , P )2 N 2 N

Taking the inner product of both sides of equation (A1) with the vector , and applying the identity* *(P ,… ,P )2 N

equation (A2), we have

N N
* *h v P p !P v (1! ! )m .! !1 i i 1 i 1i 1i

ip2 ip2

Since for every and is a nonzero vector, we see that . This implies thatm 1 0, v ≥ 0 i ≥ 2 (v , … , v ) h ! 01i i 2 N 1

the real parts of all eigenvalues of are negative. Hence, is invertible. As ,(D ) (D ) V p (D , … , D )ij i, j≥2 ij i, j≥2 i i2 in

. Since is invertible, are linearly independent.T(D ) p (V , … , V ) (D ) V , … , Vij i, j≥2 2 N ij i, j≥2 2 N

We will also use the following result that is a corollary of Cramer’s rule.
Lemma 2. Suppose that vectors form a basis of . If some vector satisfies the propertyd dV , … , V ! V ! !1 d 0

that are linearly dependent for every , then must be the zero vector.V , … , V , V , V , … , V 1 ≤ i ≤ d V1 i!1 0 i"1 d 0

We begin by justifying the rates for scenario 2 first, since the justification for scenario 1 is more difficult.

Scenario 2: Calculation of ,m 2 ≤ i ≤ N1i, opt

Theorem 1. Suppose that and for all and that assumptions (H0), (H1), and (H2,* *R 1 0 M ≥ 0 i p 1, … , Ni i

scenario 2) hold.
a) If there exist with for such that forN{m } m 1 0 2 ≤ i ≤ N l ≤ 0 (m , … , m ) p1i, opt ip2 1i, opt 1 12 1N

and all in a neighborhood of , then for every ,ˆ ˆ(m , … , m ) (m , … , m ) (m , … , m ) 2 ≤ i ≤ N12, opt 1N, opt 12 1N 12, opt 1N, opt

N*P 1 (1! ! ) (1! ! )i ij ji* *m p (1! ! ) m " m P ! m P . (A3)!1i, opt i1 i1 ij i ji j* * [ ]P P (1! ! ) (1! ! )jp21 1 1j 1i

b) Suppose that is positive for every . If , then form i ≥ 2 (m , … , m ) p (m , … , m ) l { 01i, opt 12 1N 12, opt 1N, opt 1

any , .m̂ 1 0 j ≥ 21j

Under assumption (H2, scenario 2), the invasion matrix D has components

N! * * ˆb a R ! d ! f M ! m i p j p 1!1 1 1 1 1 1 1hhp1
N

* *"b a R ! d ! f M ! m i p j ≥ 2!i i i i i i ihhp1#D p .ij

ˆ(1! ! )m i ≥ 2, j p 11i 1i"
(1! ! )m i ≥ 1, j ≥ 2, i ( j$ ji ji

We first note that

l F p 0. (A4)ˆ ˆ1 (m , …,m )p(m , …,m )12 1N 12 1N

Biologically, this is because the invader is a cloned copy of the resident P. The mathematical reasoning is asP̂
follows: when , 0 is an eigenvalue of D, with as a right eigenvector. Since*ˆ ˆ(m , … , m ) p (m , … , m ) P12 1N 12 1N

all components of are all positive, 0 is the dominant eigenvalue of D; that is, equation (A4) holds.*P
Proof of Theorem 1(a). If there exist some with for every such that(m , … , m ) m 1 0 2 ≤ i ≤ N l ≤ 012 1N 1i 1
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for all in a neighborhood of , thenˆ ˆ(m , … , m ) (m , … , m )12 1N 12 1N

!l1 p 0 (A5)Fˆ!m ˆ ˆ1i (m , …,m )p(m , …,m )12 1N 12 1N

for every .i ≥ 2
Under assumption (H2, scenario 2), the matrix , has componentsD ! l I1 N

N! * * ˆb a R ! d ! f M ! m ! l i p j p 1,!1 1 1 1 1 1 1h 1hp1
N

* *"b a R ! d ! f M ! m ! l i p j ≥ 2,!i i i i i i ih 1hp1#( )D ! l I p .1 N ij
ˆ(1! " )m i ≥ 2, j p 1,1i 1i"

(1! " )m i ≥ 1, j ≥ 2, i ( j$ ji ji

Instead of differentiating the determinant of the matrix with respect to directly, we first do theˆD ! l I m1 1i

following manipulation. Dividing the ith row of by and adding it to the first row, andD ! l I (1! " )1 1i

repeating this process for each , we see that matrix is transformed into a new matrix, denoted2 ≤ i ≤ n D ! l I1
by , which can be expressed byD̃

* *!b a R ! d ! f M ! l i p j p 11 1 1 1 1 1 1

N
* *b a R ! d ! f M ! m ! l i p j ≥ 2!i i i i i i ih 1hp1"˜ ˆD p (1! " )m i ≥ 2, j p 1ij 1i 1i#

(1! " )m i ≥ 2, j ≥ 2, i ( jji ji

N N1 (1! " )jh* *" ( )b a R ! d ! f M ! m ! l " (1! " )m ! m i p 1, j ≥ 2.! !j j j j j j jh 1 j1 j1 jhhp1 hp2(1! " ) (1! " )$ 1j 1h

Clearly, is equivalent to . For every , differentiate the determinant of the˜FD ! l IF p 0 FDF p 0 2 ≤ i ≤ N1

matrix with respect to and evaluate the result at By applying both˜ ˆ ˆ ˆD m (m , … , m ) p (m , … , m ).1i 12 1N 12 1N

equations (A4) and (A5), we find that

˜!FDF
p 0Fˆ!m ˆ ˆ1i (m , …,m )p(m , …,m )12 1N 12 1N

if and only if the vectors are linearly dependent, where the vector is given byV , … , V , V , V , … , V V2 i!1 0 i"1 N 0

˜ ˜V p (D , … , D ).0 12 1N

By lemma 1, are linearly independent and form a basis for . Therefore, by lemma 2, must beN!1V , … , V ! V2 N 0

the zero vector in . Hence, for every ; that is, noting that by equation (A4),N!1 ˜! D p 0 j ≥ 2 l p 01j 1

N N1 (1! " )jh* *b a R ! d ! f M ! m " (1! " )m ! m p 0. (A6)! !j j j j j j jh j1 j1 jh( )(1! " ) (1! " )hp1 hp21j 1h

Recall that at equilibrium we have, for every ,j ≥ 2

N N *Ph* *b a R ! d ! f M ! m " (1! " )m p 0. (A7)! !j j j j j j jh hj hj *[ ]Php1 hp1 j
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Substituting equation (A7) into equation (A6), we have
N N* *P (1! ! ) (1! ! ) P1 jh hj hm p (1! ! )m " m ! m . (A8)! !1j j1 j1 jh hj* *P (1! ! ) (1! ! ) Php2 hp2j 1h 1j j

Dividing equation (A8) by , we have* *P /P1 j

N N* * *P (1! ! ) P (1! ! ) Pj jh j hj hm p (1! ! )m " m ! m . (A9)! !1j j1 j1 jh hj* * *P (1! ! ) P (1! ! ) Php2 hp21 1h 1 1j 1

This completes the proof of part (a), theorem 1. !
Lemma 3. For the movement strategy given by equation (A3), the immigration and emigration flux for patch 1

is balanced; that is, if , then(m , … , m ) p (m , … , m )12 1N 12, opt 1N, opt

* *(1! ! )m P p m P ; (A10)! !j1 j1 j 1j, opt 1( )
j j

or equivalently, the resident species at equilibrium (with invader absent) has zero fitness in patch 1:
* *b a R ! d ! f M p 0. (A11)1 1 1 1 1 1

Proof. Multiplying equation (A3) by and summing up for , we have*P 2 ≤ i ≤ N1

N N N (1! ! ) (1! ! )ih hi! "* * * *
# $m P p (1! ! )m P " m P ! m P! ! !1i, opt 1 i1 i1 i ih i hi h( ) (1! ! ) (1! ! )ip2 ip2 i, hp2 % &1h 1i

N
*p (1! ! )m P ,! i1 i1 i

ip2

which implies that equation (A10) holds since we assume that . Clearly, equation (A11) follows fromm p 011

equation (A10) and equation (9b) for . !*P1
Lemma 4. If , then for every patch , the resident species at(m , … , m ) p (m , … , m ) i ≥ 212 1N 12, opt 1N, opt

equilibrium has fitness

'0 i p 1
* * (b a R ! d ! f M p (A12)N ( )1! !i i i i i i 1i! ")

# $( ) ( ) ( )1! 1! ! 1! ! m " m 1! 1! ! i ≥ 2.![ ]( 1i i1 i1 ih ihhp2 ( )1! !* % &1h

Proof. This result follows by using equation (A3) in equation (9b) for . !*Pi
Proof of Theorem 1(b). By lemmas 3 and 4, we see that if , then(m , … , m ) p (m , … , m )12 1N 12, opt 1N, opt

N' ˆ! m i p j p 1! 1hhp1
N (1! ! )1i(!(1! ! )(1! ! )m ! m (1! ! ) i p j ≥ 2!1i i1 i1 ih ihhp2 (1! ! )) 1hD p .ij

ˆ(1! ! )m i ≥ 2, j p 11i 1i(
(1! ! )m i ≥ 1, j ≥ 2, i ( j* ji ji

Set

1 1
V p 1, , … , .∗ ( )1! ! 1! !12 1N

Then, . That is, the vector is the left eigenvector of D corresponding to the eigenvalue 0.V D p (0, … , 0) V∗ ∗
Since all components of are positive, 0 must be the dominant eigenvalue of matrix D, and all otherV∗
eigenvalues must have strictly negative real parts. !
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Scenario 1: Calculation of ,m 2 ≤ i ≤ Ni1, opt

Theorem 2. Suppose that and for all and that assumptions (H0), (H1), and (H2,* *R 1 0 M ≥ 0 i p 1, … , Ni i

scenario 1) hold.
a) If there exist with for such that forN{m } m 1 0 2 ≤ i ≤ N l ≤ 0 (m , … , m ) pi1, opt ip2 i1, opt 1 21 N1

and all in a neighborhood of , then for every ,ˆ ˆ(m , … , m ) (m , … , m ) (m , … , m ) 2 ≤ i ≤ N21, opt N1, opt 21 N1 21, opt N1, opt

N*P 1 (1! ! )(1! ! )1 ij j1* *m p (1! ! )m " (1! ! )m P ! m P . (A13)!i1, opt 1i 1i ji ji j ij i* * [ ]P P (1! ! )jp2i i i1

b) Suppose that is positive for every . If , then form i ≥ 2 (m , … , m ) p (m , … , m ) l { 0i1, opt 21 N1 21, opt N1, opt 1

any , .m̂ j ≥ 2j1

Under assumption (H2) (scenario 1), the matrix D has components
N! * *b a R ! d ! f M ! m i p j p 1!1 1 1 1 1 1 1hhp1

* *" ˆb a R ! d ! f M ! m ! m i p j ≥ 2!i i i i i i i1 ihh≥2#D p .ij

ˆ(1! ! )m i p 1, j ≥ 2j1 j1"
(1! ! )m i ≥ 2, j ≥ 1, i ( j$ ji ji

By a similar argument as for scenario 2,

l F p 0. (A14)ˆ ˆ1 (m , …,m )p(m , …,m )21 n1 21 N1

Proof of Theorem 2(a). If there exist some with for every such that(m , … , m ) m 1 0 2 ≤ i ≤ N l ≤ 021 N1 i1 1

for all in a neighborhood of , thenˆ ˆ(m , … , m ) (m , … , m )21 N1 21 N1

"l1 p 0 (A15)Fˆ"m ˆ ˆi1 (m , …,m )p(m , …,m )21 N1 21 N1

for every .i ≥ 2
Under the assumption (H2, scenario 1), the matrix has componentsD ! l I1 N

N! * *b a R ! d ! f M ! m ! l i p j p 1!1 1 1 1 1 1 1h 1hp1
N

* *" ˆb a R ! d ! f M ! m ! m ! l i p j ≥ 2!i i i i i i i1 ih 1h≥2#( )D ! l I p .1 N ij
ˆ(1! ! )m i p 1, j ≥ 2j1 j1"

(1! ! )m i ≥ 2, j ≥ 1, i ( j$ ji ji

By direct calculation, we find that for every ,2 ≤ k ≤ N

"FD ! l I F1 N p 0Fˆ"m ˆ ˆk1 (m , …,m )p(m , …,m )21 n1 21 N1

is equivalent to , where matrix is given byFD F p 0 D1 1

N! * *b a R ! d ! f M ! m i p j ≥ 1, i ( k!i i i i i i ihhp1"(1! ! ) i p 1, j p kk1
#(D ) p !1 i p j p k1 ij

0 i ≥ 2, i ( k, j p k"
(1! ! )m i ≥ 1, j ≥ 1, i ( j, j ( k.$ ji ji
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Since is an equilibrium point, by equation (9b),*E
*Ph* *b a R ! d ! f M ! m p ! (1! ! )m! !i i i i i i ih hi hi *Ph≥1 h≥1 i

for every . It follows that is equivalent to , where matrix is given by1 ≤ i ≤ N FD F p 0 FD F p 0 D1 2 2

*N! Ph! m (1! ! ) i p j ≥ 1, i ( k! hj hj *hp1 Pj
(1! ! ) i p 1, j p kk1"
#(D ) p !1 i p j p k .2 ij

0 i ≥ 2, i ( k, j p k"
(1! ! )m i ≥ 1, j ≥ 1, i ( j, j ( k$ ji ji

Multiplying the jth column of by for every , is equivalent to , where matrix*D P j ( k FD F p 0 FD F p 02 j 2 3

is given byD3

N! *! (1! ! )m P i p j ≥ 1, i ( k! hj hj hhp1

(1! ! ) i p 1, j p kk1"
#(D ) p !1 i p j p k .3 ij

0 i ≥ 2, i ( k, j p k"
*(1! ! )m P i ≥ 1, j ≥ 1, i ( j, j ( k$ ji ji j

Multiplying the ith row of by for each and adding the results to the first row,D (1! ! ) 2 ≤ i ≤ N FD F p 03 i1 3

is equivalent to , where matrix is given byFD F p 0 D4 4

!A i p 1, j ≥ 1, j ( kj

N
*! (1! ! )m P i p j ≥ 2, i ( k! hj hj hhp1"0 i p 1, j p k

(D ) p ,#4 ij

!1 i p j p k

0 i ≥ 2, i ( k, j p k"
*(1! ! )m P i ≥ 1, j ≥ 1, i ( j, j ( k$ ji ji j

where is defined asA1
N N

* *A p (1! ! )(1! ! )m P ! (1! ! )m P ,! !1 1j j1 1j 1 j1 j1 j
jp1 jp1

and for , is defined byi ≥ 2 Ai

N
* * * *A p (1! ! ) [m P ! (1! ! )m P ] " [(1! ! )(1! ! )m P ! (1! ! )(1! ! )m P ] .!i i1 i1 i 1i 1i 1 ih h1 ih i hi i1 hi h

hp2

It is easy to check that (note that ). Since all of the entries in the kth column of are 0N! A p 0 m p 0 Di 11 4ip1

except , we see that is equivalent to , where the matrix is given(D ) FD F p 0 FD F p 0 (N ! 1)# (N ! 1) D4 kk 4 5 5
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by

!A i p 1, 1 ≤ j ! kj

A i p 1, k ≤ j ≤ N ! 1j"1

N!1
*! (1! ! )m P 2 ≤ i p j ! k! hj hj hhp1

N!1
*"! (1! ! )m P k ≤ i p j ≤ N ! 1! h, j"1 h, j"1 hhp1

(D ) p .#5 ij
*(1! ! )m P 2 ≤ i ! k, 1 ≤ j ! k, i ( jj, i j, i j

*(1! ! )m P k ≤ i ≤ N ! 1, 1 ≤ j ! kj, i"1 j, i"1 j

*(1! ! )m P 2 ≤ i ! k, k ≤ j ≤ N ! 1j"1, i j"1, i j"1"
*(1! ! )m P k ≤ i ≤ N ! 1, k ≤ j ≤ N ! 1, i ( j$ j"1, i"1 j"1, i"1 j"1

Since , adding the jth column to the first column for every j with , we see that isN! A p 0 j ≥ 2 FD F p 0i 5ip1

equivalent to , where the matrix is given byFD F p 0 (N ! 1)# (N ! 1) D6 6

!!A i p j p 1k

A i p 1, 2 ≤ j ! kj

A i p 1, k ≤ j ≤ N ! 1j"1

N!1
*! (1! ! )m P 2 ≤ i p j ! k! hj hj hhp1

N!1
*! (1! ! )m P k ≤ i p j ≤ N ! 1! h, j"1 h, j"1 hhp1"

*(D ) p !(1! ! )m P 2 ≤ i ! k, j p 1 .#6 ij ki ki k

*!(1! ! )m P k ≤ i ≤ N ! 1, j p 1k, i"1 k, i"1 k

*(1! ! )m P 2 ≤ i ! k, 2 ≤ j ! k, i ( jji ji j

*(1! ! )m P k ≤ i ≤ N ! 1, 2 ≤ j ! kj, i"1 j, i"1 j

*(1! ! )m P 2 ≤ i ! k, k ≤ j ≤ N ! 1j"1, i j"1, i j"1"
*(1! ! )m P k ≤ i ≤ N ! 1, k ≤ j ≤ N ! 1, i ( j$ j"1, i"1 j"1, i"1 j"1

Multiply the first column of by !1 and move it to become the th column, and then move the firstD (k ! 1)6

row to become the th row. We obtain a new matrix, denoted by . We see that is equivalent(k ! 1) D FD F p 07 6

to . To characterize , define the matrix asFD F p 0 D (N ! 1)# (N ! 1) D7 7 8

N!1! *! (1! ! )m P 1 ≤ i p j ≤ N ! 1!" h, j"1 h, j"1 hhp1#(D ) p8 ij " *(1! ! )m P 1 ≤ i, j ≤ N ! 1, i ( j$ j"1, i"1 j"1, i"1 j"1

and let denote the th row of the matrix for every . By the definition of , we see that theV (i ! 1) D 2 ≤ i ≤ N Di 8 8

matrix can be obtained by replacing the th row of by the vector(N ! 1)# (N ! 1) D (k ! 1) D 1# (N ! 1)7 8

V p (A ,… , A ).0 2 N

Since , are linearly dependent for any . By lemma 1, we see thatFD F p 0 V , … , V , V , V , … , V 2 ≤ k ≤ N7 2 k!1 0 k"1 N
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are linearly independent and thus form a basis of . By lemma 2, we see that is the zero vectorN!1V , … , V ! V2 N 0

in . Hence, for every and . As directly yields equation (A13), this completesN!1! A p 0 i ≥ 2 A p 0 A p 0i 1 i

the proof of part (b), theorem 2. !
As a direct consequence of equation (A13), we have
Lemma 5. For the movement strategy given by equation (A13), the expected fitness of the resident species at

equilibrium (with invader absent) is given by
N! [1! (1! ! )(1! ! )]m i p 1! 1j j1 1j" jp2* *b a R ! d ! f M p . (A16)# Ni i i i i i (1! ! )(1! ! )ij j1$ %
& '" 1! m i ≥ 2! ijjp2 (1! ! )( ) *i1

Proof of Theorem 2(b). By lemma 5, we see that if , then(m , … , m ) p (m , … , m )21 N1 21, opt N1, opt

N! ( ) ( )! 1! ! 1! ! m i p j p 1! 1h h1 1hhp2
N1" ˆ ( ) ( )!m ! 1! ! 1! ! m i p j ≥ 2!1h ih h1 ihhp2( )1! !# i1D pij

ˆ(1! ! )m i p 1, j ≥ 2j1 j1"
(1! ! )m i ≥ 2, j ≥ 1, i ( j.( ji ji

Set Then, . That is, the vector is the left eigenvector of DV p (1, 1! ! , … , 1! ! ) . V D p (0, … , 0) V∗ 21 N1 ∗ ∗
corresponding to the eigenvalue 0. Since all components of are positive, 0 must be the dominant eigenvalue ofV∗
matrix D, and all other eigenvalues must have strictly negative real parts. !

Literature Cited Only in Appendix A
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Appendix B from D. L. DeAngelis et al., “The Effect of Travel Loss on
Evolutionarily Stable Distributions of Populations in Space”
(Am. Nat., vol. 178, no. 1, p. 15)

Interpretation of the Rates Given by Equation (17a) for the Three-Patch
Tritrophic Case in Scenario 1
We describe a typical example in the three-patch case below. All parameters were fixed using the values given in
table B1 except the rates , , , and .ˆ ˆm m m m21 31 21 31

The rates given by formula (17a) were calculated (to machine accuracy) using Matlab: m p21, opt

and . When the resident uses these rates, based on lemma 5,0.092409525773196 m p 0.33546857142857131, opt

its fitness at the boundary equilibrium with the invader absent (shown here rounded to 3 decimal places, but
calculated to 15 decimal places),

* * * *ˆ(P , P , R ,M ) p (0, 0, 0, 30, 22.727, 31.818, 32.941, 43.402, 19.727, 22.476, 26.115, 49.65),

on patch 1 is 0.02, on patch 2 is !0.002, and on patch 3 is 0. It is interesting to note that as predicted by
lemma 5, this is an example where the fitness on patch 2 is negative.
Recall that in the two-patch case, an optimal movement rate exists given by formula (14), and when the

resident chooses this rate, no other genotype using a different rate can successfully invade. This is proved
analytically in Y. Lou and C.-H. Wu (unpublished manuscript) and is illustrated in figure 4. In reality, it is
impossible for a resident to choose the precise optimal movement rate, so the outcome of competition (exclusion
of one genotype or the other, or coexistence) will in fact always be determined by the relative values of the
movement rates as illustrated in figure 4A, 4C. If the resident and the invader choose rates on opposite sides of
the optimal rate, there is coexistence. Therefore, which rate is closer to the optimal rate matters only when either
the resident and the invader both choose rates that are smaller or both choose rates that are larger than the
optimal rate. Then, it is the population that chooses the rate closer to the optimal rates that wins, driving the
other population to extinction.
This inability to select rates exactly equal to the optimal rates also occurs on a computer, due to round-off

errors. This complicates numerical calculations in the immediate vicinity of the optimal rates. In particular, we do
not know whether the rates we enter and think are the precise rates given by the formula are actually both
slightly larger or both slightly smaller or whether one is larger and one is smaller than the precise rates. To
complicate matters further, the invasion matrix has a zero eigenvalue if the precise rates are entered, making
convergence very slow.
To test the predictions of our rates, we carried out a number of experiments using the AUTO interface in the

software package XPPAUT (see Ermentrout 2002) to continue equilibrium solutions numerically and detect
bifurcations, that is, detect changes in the stability and/or number of equilibrium solutions as the value of a
parameter, called the bifurcation parameter, is varied.
Experiment I. We chose the residents’ movements rates and , close to the optimal rates andm m m21 31 21, opt

, respectively, but both larger than the optimal rates; and we chose the invaders’ movement rates andˆm m31, opt 21

, both even larger than the residents’ movement rates. As expected, the resident outcompeted the invader,m̂31

driving it to extinction. Then, using one of the invaders’ movement rates, , as the bifurcation parameter, wem̂21

allowed it to decrease. The resident continued to outcompete the invader until reached a critical rate, *m̂ m !21 1

, at which there was a transcritical bifurcation resulting in the stable coexistence of both the resident andm21, opt

the invader for values of .*m̂ ! m21 1

Experiment II. We chose the residents’ movements rates and , close to the optimal rates andm m m21 31 21, opt

, respectively, but both smaller than the optimal rates; and we chose the invaders’ movement rates andˆm m31, opt 21

, both even smaller than the residents’ movement rates. Again, as expected, the resident outcompeted them̂31
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invader, driving it to extinction. Then, using one of the invaders’ movement rates, , as the bifurcationm̂21

parameter, we allowed it to increase. The resident continued to outcompete the invader until reached am̂21

critical rate, , at which there was a transcritical bifurcation resulting in the stable coexistence of both*m 1 m2 21,opt

the resident and the invader for values of .*m̂ 1 m21 2

Experiment III. We chose the residents’ movements rates and . Onceˆ ˆm 1 m 1 m m ! m ! m21 21 21, opt 31 31 31, opt

more, as expected, the resident outcompeted the invader, driving it to extinction. Then, using the invaders’
movement rates as the bifurcation parameter, we allowed it to increase. The resident continued to outcompetem̂31

the invader until reached a critical rate, , at which there was transcritical bifurcation resulting in*m̂ m 1 m31 3 31, opt

the stable coexistence of both the resident and the invader for values of .*m̂ 1 m31 3

Experiment IV. We chose rates and and allowed to vary. As expected,ˆ ˆm p m p m m ! m m31 31 31, opt 21 21, opt 21

the outcome was similar to that described by figure 4A in the two-patch case, with the transcritical bifurcation
resulting in coexistence occurring at the optimal rate .m21, opt

Experiment V. We chose rates and and allowed to vary. As expected, theˆ ˆm p m p m m 1 m m31 31 31, opt 21 21, opt 21

outcome was similar to that described by figure 4C in the two-patch case, with the transcritical bifurcation
resulting in coexistence occurring at the optimal rate .m21, opt

Experiment VI. We entered the rates calculated using Matlab for both of the residents’ rates, and we chose two
nonoptimal rates for the invaders. Convergence was too slow for us to be able to distinguish whether the invader
would die out completely or coexist with the resident. Starting AUTO from the boundary equilibrium with only
the resident present, AUTO did not detect a bifurcation to a coexistence equilibrium, but because of the zero
eigenvalue of the invasion matrix, AUTO had difficulty determining the stability of the boundary equilibrium. It
is therefore difficult to say with any certainty that no such bifurcation occurs.

Table B1. Parameter values used to illustrate the three-patch model
a1 p .01 b1 p .5 c1 p .5 d1 p .01 r1 p 1.7 K1 p 40 dm1 p .09
a2 p .009 b2 p .55 c2 p .55 d2 p .008 r2 p 1.55 K2 p 50 dm2 p .1
a3 p .03 b3 p .48 c3 p .6 d3 p .011 r3 p 1.8 K3 p 42 dm3 p .105
!12 p .03 !21 p .03 !13 p .02 !31 p .01 !23 p .01 f1 p .006
m12 p .23 m13 p .21 m23 p .2 m32 p .0 f2 p .008

p .23m̂12 p .21m̂13 p .2m̂23 p 0m̂32 f3 p .0055


