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The mechanisms that underpin ecosystem stability and species 
coexistence are well-studied, but not yet well-understood1–3. 
Ecological models that integrate species interaction rates to 

match abundance data indicate that extant ecosystems must per-
sist despite: (i) population oscillations—driven by environmental 
fluctuations, and nonlinear effects of abundance on recruitment—
which increase the risk of stochastic extinction4–7 and (ii) competi-
tion among species for limited resources, which promotes diversity 
loss via competitive exclusion8–10. The challenges to stability and 
coexistence can be summarized by two ecological ‘paradoxes’: the 
paradox of enrichment4 addresses the prevalence of conditions that 
should result in the destabilization of population oscillations, and 
the paradox of the plankton10 addresses the longstanding puzzle 
of how diverse ecological communities can persist although many 
ecologically similar species are competing for a limited range of 
resources2,3,11. Stability and coexistence are hypothesized to rely on 
countervailing processes that attenuate population cycles12–14 and 
that give each species a positive population growth rate whenever 
their abundance becomes low1,3,11.

Spatial and temporal heterogeneities in species abundance and 
recruitment play a key part in determining stability and coexis-
tence. When local conditions experienced by individuals differ sys-
tematically from their population averages, the ecological impacts 
of hotspots (for example, of recruitment or resource consumption) 
are not necessarily balanced by the impacts of coldspots. This can 
result in stability and coexistence outcomes that might not be pos-
sible under homogeneous conditions15,16. In many cases, the spa-
tiotemporal structure promotes stability and coexistence, whereas 
homogeneous environments tend to be less stable16.

Although the spatiotemporal structure of the ecosystem is obvi-
ously affected by exogenous drivers such as ocean currents, rainfall 
patterns or habitat fragmentation, collective behaviour generates 
spatiotemporal patterns that modify the effects of exogenous driv-
ers, as seen in swarms of insects17, schools of fish18 or migrating 
flocks19 and herds20,21. Spatiotemporal heterogeneities generated 
by collective behaviour can have ecosystem consequences. For 
example, group formation has been linked to the stability of preda-
tor–prey dynamics for lions and wildebeest in the Serengeti22. 

Ecosystem states can in turn affect collective dynamics, such as 
through density-dependent transitions from disordered to ordered 
group behaviour, which are common in taxa that exhibit collective 
behaviour18,23. For example, locust swarms emerge at critical densi-
ties when locust populations transition to collective motion24. The 
ecosystem state therefore has a key role in the regulation of collec-
tive behaviour, and collective behaviour can in turn affect ecosystem 
states. However, the consequences of feedback between collective 
behaviour and ecosystem dynamics remain largely unexplored25–28.

Here we demonstrate the ecological potential of this feedback by 
adding collective behaviour to a simple food-web model29,30, focus-
ing on the particularly common and well-studied case of collective 
movement17. Our results show that collective behaviour funda-
mentally alters the stability and coexistence outcomes in canoni-
cal ecosystems, and provides a resolution to both the paradox of 
enrichment and the paradox of the plankton via a social–ecological 
feedback loop that is inherent to the consumption of resources and 
recruitment in collective groups. The effects of collective movement 
on stability and coexistence are distinct from previously described 
effects of spatial aggregation on ecosystem processes, and open new 
avenues for a predictive understanding of stability and biodiversity 
through the quantitative study of social–ecological dynamics.

Results
Consumer−resource model. We consider a simple ecosystem with 
two consumer species, P and Q, feeding on a resource species R in a 
homogeneous environment:

dP
dt = bfP(R)P−mP
dQ
dt = bfQ(R)Q−mQ
dR
dt = rR

(

1− R
K
)

− fP(R)P− fQ(R)Q

(1)

where b is the resource conversion efficiency, m is the consumer 
mortality rate, and r and K are the maximum per capita recruitment 
rate and carrying capacity of the resource population, respectively 
(Table 1). The per capita resource consumption rate of consumer 
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j is given by its functional response fj(R) = ajR/(1 + ajhR), where h 
is the handling time and aj = ecj is the hazard of encounter (e) and 
subsequent capture (cj). We assume the two consumer species differ 

only with respect to their capture efficiencies cj. This model is com-
monly used to study the paradox of enrichment and the paradox of 
the plankton3,4.

Table 1 | Simulation parameters used in the main text

Parameter value interpretation

R(0) 1,000 Initial resource population size
P(0) 100 Initial consumer population size for the stability experiments
P(0) 10 Initial superior consumer population size for the coexistence experiments
Q(0) 10 Initial inferior consumer population size for the coexistence experiments
Δt 0.1 Time step
r 0.03 Maximum per capita rate of increase in the resource population
K 2,000–8,000 Carrying capacity for the stability experiments
K 2,000 Carrying capacity for the coexistence experiments
K* 3,395.305 Value of K where limit cycles begin given cP, h, b, m, ρ and L
ρ 5 Radius of attraction, alignment and resource encounter
ρ0 1 Radius at which collision avoidance is triggered
Δθmax 1 Maximum turn rate in radians
cP 0.015 Probability per unit time of capture given encounter for the superior consumer
cQ 0.0135 Probability per unit time of capture given encounter for the inferior consumer
cQ/cP 0.9 Relative capture efficiency of the inferior consumer
b 0.3 Probability that a resource consumption event will produce a new consumer
m 0.02 Consumer mortality rate; mean consumer lifespan = 1/m
h 5 Consumer handling time
sC 3 Speed of consumer individuals
sR 1 Speed of resource individuals
η 1 Noise in consumer and resource velocities

L 100 Arena length
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Fig. 1 | Collective behaviour promotes ecosystem stability and species coexistence. a,b, Bifurcation diagram showing how minimum and maximum 
consumer population sizes respond to increasing resource carrying capacity (K) in numerical solutions of equation (1) (lines) and in the agent-based 
model without collective behaviour (a; black squares) compared with when collective behaviour is present in the consumer (b; red points). The carrying 
capacity at which limit cycles are analytically expected (K*) is shown as a vertical line. Variations in population sizes for K < K* are due to demographic 
stochasticity in the agent-based model. c, With two consumers, the competitively superior consumer P excludes the inferior consumer Q in the absence of 
collective behaviour. d, With collective behaviour in the consumer, both consumer species persist indefinitely. See Table 1 for simulation parameters.
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To add collective behaviour, we represent equation (1) using 
an individual-based simulation in which consumer and resource 
individuals occupy a square landscape with side length L and peri-
odic boundary conditions (Methods). We use a landscape that is 
large relative to an individual’s powers of movement and in which 
behavioural dynamics are fast relative to trophic dynamics. Absent 
collective behaviour, individuals move independently and exhibit 
diffusive mixing at the population level. All trophic and behavioural 
interactions occur within an individual’s interaction radius ρ, yield-
ing a constant expected encounter hazard of e0 = πρ2/L2 for ensem-
bles of independent individuals (note that we use several flavours 
of e to represent different views of the encounter rate, including e0 
and, below, an effective encounter rate ē that is estimated from data; 
see Methods for details). New individuals arise at a random location 
within a distance ρ of their parent. Following a consumption event, 
the consumer involved reproduces with probability b. The con-
sumer then waits an average handling time of h before being eligible 
for consumption again. With collective behaviour, each individual 
avoids collisions, and moves towards and aligns with its conspecific 
neighbours (within a distance ρ) according to a well-studied model 
of collective movement31,32.

We first consider the impact of collective behaviour on the para-
dox of enrichment, considering the model with only one consumer 
species, P. In ecosystems composed of independent individuals, 
increasing the resource carrying capacity (K) causes consumer and 
resource populations to oscillate with increasing amplitude (Fig. 
1a). By contrast, these limit cycles are attenuated with collective 
behaviour in the consumer (Fig. 1b), or in both the consumer and 
the resource (Supplementary Information), leading to long-term 

persistence under levels of enrichment that would cause ensembles 
of independent individuals to go extinct.

We next examined how collective behaviour alters the coexis-
tence of species by simulating exploitative competition between a 
superior consumer (P) and an inferior one (Q) that has a lower cap-
ture efficiency, cQ/cP < 1, but is otherwise identical. In the absence 
of collective behaviour, this results in the exclusion of the inferior 
competitor—a key feature of the paradox of the plankton10 and also 
at the core of ecological33 and evolutionary8 theory. The presence of 
collective behaviour fundamentally changes this outcome, enabling 
the long-term persistence of both consumer species using a single 
resource (Fig. 1c,d).

Social–ecological feedback. The impacts of collective behaviour on 
ecosystem stability and species coexistence share a common mech-
anism—an emergent social–ecological feedback loop that involves 
the resource encounter rate as well as the number and size of the 
collective consumer groups.

In populations of independent consumers, the per capita resource 
encounter rate e is stationary over time and identically distributed 
across subsets of the population (that is e ~ e0 for independents) 
(Extended Data Fig. 1). However, when consumers form social 
groups, systematic differences emerge in the access to resources, 
indicated by the fact that resource densities are lower in the vicini-
ties of non-feeding consumers (Extended Data Fig. 2). This dis-
parity causes a decrease in the per capita resource encounter rate 
averaged over the consumer population that scales with the number 
and size of collective groups, attaining the lowest values when the 
population forms into fewer, larger groups, and the highest values 
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Fig. 2 | a social–ecological feedback loop stabilizes ecosystems with collective consumers. The system is enriched to K = 12,000, which would result in 
the extinction of populations of independent individuals (Fig. 1). a, The social to ecological component of the feedback loop: with collective consumers, 
the per capita encounter rate varies with the number of consumer groups, rather than remaining stationary around e0, denoted by the horizontal line 
(Extended Data Fig. 1). b, The ecological to social component of the feedback loop: the number of consumer groups varies in turn with the abundance 
of resources, creating a feedback loop between resource abundance and consumption beyond what would occur through resource limitation alone. 
Lines span interquartile ranges. c, The relationship between resource abundance and the number of ocnsumer groups. d, Concordant cycles in resource 
abundance and the number of consumer groups. The red line in c shows a rolling average over 10 time units. Similar results are obtained when the 
timescale for behavioural decisions Δt, the consumer’s mortality rate m and its conversion efficiency b are all decreased by a factor of 10, speeding up 
behaviour and slowing consumer demography by an order of magnitude (Extended Data Fig. 4).
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when the population is composed of many small groups (Fig. 1a and 
Extended Data Figs. 2 and 3). In collective consumers, ecological 
dynamics (per capita resource encounter rate and, therefore, con-
sumer recruitment) are therefore affected by social conditions (the 
number and size of social groups).

The social structure of the collective consumer population var-
ies in turn with the abundance of resources, indicating that social 
dynamics are reciprocally affected by ecological conditions. Both 
the size and number of consumer groups varies with the abundance 
of resources (Fig. 2b–d and Extended Data Figs. 2 and 3). The num-
ber and size of groups is determined by the rates of group fusion 
(when two groups combine to form one), group fission (when one 
group splits into two) and extinction (when a group of size one goes 
extinct). We hypothesize that resource abundance affects the num-
ber and size of groups by shifting the balance between rates of group 
fission and extinction to favour more smaller groups when resources 
are abundant (Supplementary Information). In resource-rich envi-
ronments, singleton groups are more likely to grow via reproduc-
tion before they go extinct, and fast-growing groups are more likely 
to undergo fission. Consistent with our hypothesis, there are more 
consumer groups for the same number of consumers when more 
resources are present (Extended Data Fig. 5).

To summarize the social–ecological feedback loop, the num-
ber and size of collective consumer groups affects resource uptake 
(with more efficient uptake when there are many small groups) and 
resource abundance, in turn, affects the number and size of collec-
tive groups (with more and smaller groups favoured when resources 
are more abundant). This attenuates population cycles by reducing 
resource consumption when resources are scarce to a greater degree 
than would occur with independent consumers through resource 
limitation alone34 (Extended Data Fig. 6). By causing systematically 
higher encounter rates when consumer population sizes become 
small, this social–ecological feedback also allows the coexistence 
of collective consumer species where competitive exclusion would 
otherwise prohibit it (Fig. 1c,d and Extended Data Fig. 1).

An unanticipated result is obtained by fitting a constant effec-
tive encounter rate ē to match the ecosystem model (equation (1)) 
to the simulation data, and examining the critical value of resource 
enrichment at which limit cycles are predicted to begin, K*. The 
critical value K* is inversely proportional to e, so changing the 
encounter rate changes the level of enrichment at which popula-

tion cycles are predicted. Without collective behaviour, the effective 
encounter rate ē recovers the expected value ē ≈ e0, as required. In 
this case, K* is invariant to changes in the resource enrichment (K). 
By contrast, in collective consumers, the effective encounter rate 
ē is tuned to the level of resource enrichment (that is ē ̸≈ e0) and 
K* thus varies with K. Remarkably, increasing levels of enrichment 
cause emergent decreases in the effective encounter rate of collec-
tive consumers that keep the system at or just below the value of K* 
at which destabilizing limit cycles would otherwise begin (Fig. 3).

Discussion
We describe the ecosystem impacts of collective behaviour driven 
by emergent hierarchies in access to resources and reproductive 
opportunities, and thus by general processes associated with com-
plex social groups35. These processes are distinct from the stabiliz-
ing effects of aggregation that have previously been described16 in 
that they involve the emergence of dynamic aggregation patterns 
that are tuned to population dynamics through social–ecological 
feedback (Fig. 2). These feedback loops respond through collective 
cognition to changing ecological conditions at other trophic levels 
(Figs. 2 and 3 and Extended Data Figs. 7–9).

Individuals in our model interact spatially to modulate intra- 
and interspecific competition, a feature that is shared with other 
cross-scale ecosystem models, such as the perfect plasticity approxi-
mation36 of forest ecosystem dynamics, which assumes that trees 
place their canopies to minimize competitive overlap with neigh-
bouring crowns. However, whereas the modulation of intra- and 
interspecific competition is a hardwired assumption of the perfect 
plasticity approximation, in our model competition modulation is 
an emergent property of collective behaviour through the dynamic 
adjustments in the size and structure of social groups.

Taken together, our results indicate that the widespread existence 
of collective behaviour in ecosystems could have a key role in their 
stability and diversity. Quantifying the mechanisms of interaction 
between social and trophic dynamics has applications to controlling 
the spread of infectious diseases37, managing fisheries28,38, forecast-
ing coupled biogeochemical cycles39,40 and predicting the formation, 
growth and dissolution of human social groups including firms41 
and societies42. In its ubiquity, its fundamental impacts on biological 
systems and its potential to enhance forecasting, collective behav-
iour may be an important element of the rules of life.

Methods
Agent-based simulation. The position xi of individual i changes over time 
according to

xi(t + Δt) = xi + svi(t) (2)

where s represents the scalar speed and vi velocity (direction of movement), scaled 
each time step to have unit magnitude. Velocity evolves according to

vi(t + Δt) = ⟨v⟩i(t) + ηz(t) (3)

where 〈v〉i represents the expected resultant velocity (described below), η is a scalar 
noise parameter and z(t) is a random variable drawn from a standard bivariate 
normal distribution (zero mean, unit variance in each coordinate).

An individual’s expected resultant velocity 〈v〉i is affected by its current velocity 
and possibly by the positions and velocities of its conspecific neighbours. When 
collective behaviour is absent, 〈v〉i(t) = vi(t) and so vi(t + Δt) = vi(t) + ηz(t). When 
collective behaviour occurs, 〈v〉i(t) is influenced by social interactions as each 
individual avoids collisions, and moves towards and aligns with its conspecific 
neighbours according to the Couzin model31,32. We tracked the resulting collective 
groups by assigning conspecific individuals to the same group if and only if they 
interacted behaviourally during a given time step, with individuals assigned to their 
own group by definition. To track groups computationally, we used an adaption of 
methods for equivalence classes31,43.

Because species capable of conspecific behavioural responses will probably also 
respond to nearby resources or predation risk, we also investigated behavioural 
responses between consumer and resource individuals (regardless of whether 
collective behaviour is active) by including pursuit and avoidance terms in 〈v〉i. 
In these simulations, consumers turn toward resource individuals in their local 
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neighbourhood, whereas resource individuals orient away from consumers 
(Supplementary Information).

At each time step of length Δt, each resource individual reproduces with 
probability r

(

1 − R
K
)

Δt, and each consumer individual dies with probability 
mΔt. If a resource individual is within a distance ρ of a consumer who is not in 
the handling state from a previous consumption event, the resource is captured 
with probability cjΔt. Handling consumers become eligible for consumption with 
probability h−1Δt.

Importantly, the landscape is large and behaviour is fast, relative to the lifespan 
of a consumer (50 time units) (Table 1): moving in a straight line, it would take 
a consumer approximately their entire lifespan to cross the arena diagonally 
and the periodicity of consumer–resource cycles is approximately six consumer 
lifetimes. Similar results to those shown in Fig. 2 are obtained when the timescale 
for behavioural decisions Δt, consumer mortality rate m and conversion efficiency 
b are all decreased by a factor of 10, thus speeding up behaviour and slowing 
consumer demography by an order of magnitude, which suggests that these results 
do not depend on the ratio of timescales between behavioural and ecological 
processes (Extended Data Fig. 3). Table 1 shows the simulation parameters used in 
the main text. A sensitivity analysis, the full computer code and simulation output 
are provided in the Supplementary Information.

Encounter rate. In model (1), the encounter rate e in the functional responses f 
represents the instantaneous per capita hazard that a random consumer individual 
and a random resource individual will be separated by a distance of less than ρ. 
The encounter rate is a constant in the canonical ecosystem model represented by 
equation (1)—which assumes random mixing—implying that conspecifics behave 
independently from one another. In this case, the value of e is constant, given by 
e0 = πρ2/L2. With collective behaviour, we demonstrate that e varies predictably with 
the number of collective groups. Finally, we fit a constant effective encounter rate 
ē  to simulation data in which the collective behaviour is active, representing the 
best constant encounter rate to capture the dynamics of the ecosystem model with 
collective behaviour using the methods described below.

The critical level of enrichment K* at which limit cycles arise in model (1) 
through a Hopf bifurcation depends on the value of e. From the standard analysis 
of the Rosenzweig–MacArthur model, we know that as enrichment is varied, the 
bifurcation occurs when the predator nullcline intersects the peak of the prey 
nullcline. This happens at the K* that satisfies

eK∗

=
1
c

( 1
h +

2m
b − hm

)

(4)

Analysis of agent-based simulations. The encounter rate is estimated from the 
agent-based simulation as

ej =
1

RCj

∑

i
nij (5)

where nij is the number of resource individuals in range of the ith consumer 
individual of type j, Cj is the abundance of that type and R is the abundance of the 
resource.

We estimated the per capita recruitment rate 1Cj

dCj
dt  from the (discrete-time) 

abundances in the agent-based simulation using 1Cj

dCj
dt = d

dt logCj ≈
Δy
Δt  where 

y = logCj observed from the agent-based simulation.
We estimate the effective encounter rate under collective behaviour, ē , by 

fitting the analytical model to the abundance time series from the agent-based 
simulation, with all parameters fixed to their true values except for e. Specifically, 
we choose ē  to minimize the loss function

h2(ē) = (μx − μx̂)
2
+ (μy − μŷ)

2
+ (σx − σx̂)

2
+ (σy − σ ŷ)

2 (6)

where the observed values x = log (R) and y = log (Cj) = log (P) are from the 
simulation, x̂ and ŷ refer to the corresponding values predicted by equation (1) 
using ē  instead of e, and μ and σ represent the mean and s.d. over time. We used 
the optimize() function in R to search for the value of ē  that minimized h in the 
interval (0.25e0, 1.5e0).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Output from the agent-based simulations can be found on GitHub (https://github.
com/BenjaminDalziel/collectives-ecosystems) and Zenodo (https://zenodo.org/
record/4925028).

Code availability
Simulation code and scripts for statistical analysis can be found on GitHub (https://
www.github.com/BenjaminDalziel/collectives-ecosystems) and Zenodo (https://
zenodo.org/record/4925028).
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Extended Data Fig. 1 | Negative density dependence in resource encounter rates promotes coexistence in collective consumers, reversing canonical 
competitive exclusion. Solid lines show linear fits. Blue lines show fits that omit outlying abundances driven by initial conditions. Dashed lines enclose 
5 standard errors on either side of lines of best fit. For independent consumers (top row), encounter rates remain near the expected value of e0 (black 
horizontal line). For collective consumers, mean encounter rate is lower and decreases with increasing abundance. Simulation parameters are given in 
Table 1.
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Extended Data Fig. 2 | Systematic differences in access to resources in collective consumers dependent on group structure and resource abundance. a 
The per-capita encounter rate of questing consumers is positively correlated with the number of consumer groups. b-c The per-capita encounter rate of 
handling consumers is less strongly correlated with the number of groups, so questing consumers are more strongly disadvantaged when the consumer 
population forms into fewer groups. d The fraction of the consumer population questing varies with resource abundance as ϕ ~ e−κR where κ is a scaling 
parameter.

NatuRE ECology & EvolutioN | www.nature.com/natecolevol

Content courtesy of Springer Nature, terms of use apply. Rights reserved



ArticlesNATurE ECology & EvoluTioN ArticlesNATurE ECology & EvoluTioN

Extended Data Fig. 3 | Encounter rate depends on both the average size and number of collective groups. a Solid line shows best fit via linear regression, 
dashed lines enclose ± 5 standard errors. b Residual variation in encounter rate as a function of the number of groups. c The average size of groups is 
inversely correlated with the number of groups.
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Extended Data Fig. 4 | a social–ecological feedback loop stabilizes ecosystems with collective consumers. Results analogous to those shown in Fig. 2 
but with the timescale for behavioural decisions δ, consumer mortality rate m and conversion efficiency b all decreased by a factor of 10, relative to their 
values shown in Table 1.
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Extended Data Fig. 5 | Resource abundance affects the relationship between consumer population size and the number of consumer groups. There are 
more consumer groups for the same number of consumers when more resources are present. Point size is proportional to resource abundance.
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Extended Data Fig. 6 | Phase portraits of the one-consumer resource system with per-capita encounter rate viewed as a state variable. a Data from 
the individual-based simulation with K = 8000 and the rest of the parameters at the values specified in Table 1, with encounter rate calculated using eqn. 
(5). b The same data, but replacing observed encounter rate with a Monod function e(R) = e0R/(R + g) where R is taken from the simulation data and the 
parameter g = 250 expresses the strength of the net impact of collective behaviour on encounter rate, as the resource abundance at which encounter rate 
is half its maximum value. Encounter rates shown are smoothed with a moving average with a bandwidth of 5 time units.
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Extended Data Fig. 7 | Collective behaviour promotes ecosystem stability in a range of contexts. Stability results analogous to Fig. 1a,b with independent 
consumers in black and collective consumers in red for a,b collective resource, c,d pursuit and avoidance behaviours, e,f, alignment only, g,h low noise, and 
i,j, high noise. See Sensitivity Analysis in Supplementary Information.
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Extended Data Fig. 8 | Collective behaviour promotes ecosystem species coexistence in a range of contexts. Coexistence results analogous to Fig. 1c,d 
with independent consumers in black and collective consumers in red for a,b collective resource, c,d pursuit and avoidance behaviours, e,f, alignment only, 
g,h low noise, and i,j, high noise. See Sensitivity Analysis in Supplementary Information.
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Extended Data Fig. 9 | Coexistence results when one of the competing consumers may behave independently while the other exhibits collective 
behaviour. a both consumers independent; b superior consumer behaves collectively, inferior consumers independent; c superior consumer independent, 
inferior consumer behaves collectively; d both collective. The relative capture efficiency of the inferior consumer is 0.9 (Table 1).
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