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ABSTRACT
Many drivers of ecological systems exhibit regular scaling relationships, yet the mechanisms explaining these relationships are 
often unknown. Trophic interaction strengths are no exception, exhibiting scaling relationships with predator and prey traits 
that lack evolutionary explanations. We propose two rules to explain the scaling of trophic interaction strengths through the re-
lationship between a predator's feeding rate and its prey's density—the so-called predator functional response. First, functional 
responses allow predators to meet their energetic demands when prey are rare. Second, functional responses approach their 
maxima near the highest prey densities predators experience. We show that equations derived from these rules predict functional 
response parameters across over 2100 functional response experiments and make additional predictions such as their allometric 
scaling. The two rules thereby offer a potential ultimate explanation for the determinants of trophic interaction strengths, reveal-
ing ecologically realised constraints to the complex, adaptive nature of functional response evolution.

1   |   Introduction

Understanding the determinants of predator–prey interaction 
strengths is key to understanding the stability, diversity and dy-
namics of ecosystems (de Ruiter et al. 1995; McCann et al. 1998; 
Paine 1992; Yodzis 1981). A fundamental component of trophic 
interaction strengths is the predator's functional response that 
describes how predator feeding rates change with prey density 
(Holling 1959; Solomon 1949). Thousands of experiments have 
measured functional responses for taxa ranging from microbes 
to large carnivores from nearly every biome on earth (Uiterwaal 
et  al.  2022) uncovering a number of variables influencing the 
underlying parameters (Coblentz et  al.  2023; DeLong  2021; 
Pawar et  al.  2012; Uiterwaal and DeLong  2020; Vucic-Pestic 
et  al.  2010). Principal among these variables are predator and 
prey body sizes, whose allometric relationships with functional 

response parameters serve as the basis for most dynamical 
food web models (Brose et al. 2006; Otto et al. 2007; Yodzis and 
Innes 1992). However, despite the existence and utility of such 
statistical relationships between functional response parame-
ters and many traits, it remains unclear why these relationships 
exist as they do.

Early theory suggested that predator biomass consumption 
should scale to the ¾ power because organisms' metabolic 
rates scale to approximately the ¾ power with their masses 
(Yodzis and Innes 1992). More recent theory considering prox-
imate mechanisms for the strengths of trophic interactions, 
such as the dimensionality of predator–prey interactions 
and the allometric scaling of predator and prey movement 
velocities, has also seen success in predicting certain func-
tional response parameters (i.e., the space clearance/attack/
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search rate) and their scaling relationships (Pawar et al. 2012; 
Portalier et  al.  2022). But other parameters (i.e., the asymp-
totic/maximum feeding rate or its reciprocal, handling time) 
remain poorly predicted, such that an understanding of the 
evolutionary drivers of functional responses remains missing. 
An encompassing means to predict predator foraging rates 
through theory reflecting their ultimate causes is therefore of 
significant interest.

We aim to provide such a theory derived from two simple rules 
for predator foraging. We also examine the ability of our theory 
to predict functional response parameters and assess several ad-
ditional theoretical predictions.

2   |   Two Rules for Functional Responses

We posit that predator functional responses meet two condi-
tions. First, a predator's feeding rate meets its energetic demands 
at the low prey densities it is likely to experience. This must be 
true for the long-term persistence of the predator population. 
Although cases exist in which predator mortality or biomass 
loss exceeds energy intake and reproduction, as in the declining 
phases of predator–prey cycles, predator energy intake must bal-
ance energetic demand over the long term to avoid extirpation 
(McCann 2011). Second, the prey densities at which a predator's 
feeding rate saturates (i.e., approaches its maximum) should be 
near the highest prey densities it is likely to experience. This is 
because, first, feeding rates must saturate at some prey density 
(Holling 1959; Jeschke et al. 2004). Second, if feeding rates sat-
urated at a lower prey density, predators would pay an opportu-
nity cost for missing out on higher feeding rates at the high prey 
densities they experience. Third, lower handling times leading 
to higher, less saturated feeding rates at high prey densities: (i) 
have diminishing fitness returns since the highest prey densities 
are rarely experienced, (ii) imply less energy extracted per prey 
consumed (Okuyama 2010) and (iii) require larger ingestive or 
digestive capacities that are energetically costly (Armstrong and 
Schindler 2011; McWilliams and Karasov 2001; Secor et al. 1994). 
Although predators may rarely experience these high prey den-
sities, selection on predators may still be strong because taking 
advantage of these periods of high prey abundance can have 
outsized effects on predator fitness. For example, Armstrong and 
Schindler (2011) showed that many fishes have excess digestive 
capacities to achieve feeding rates up to three times their average 
rate despite the high cost of maintaining that capacity.

Past studies on functional response evolution have largely fo-
cused on relatively simple optimization of predator feeding rates 
(Abrams 1982; Amarasekare 2022; DeLong and Coblentz 2022). 
The two rules we posit take a different view in which func-
tional responses are the outcome of the long-term evolution of 
the traits determining functional responses that balance a mul-
titude of selective pressures. The outcome of this evolutionary 
process is that predators are minimally capable of persisting 
when prey are scarce while also taking advantage of occasionally 
abundant prey.

We derive two equations encapsulating these constraints. The 
first rule that predators must satisfy their energetic demand at 
low prey densities can be formalised as

where D is predator energetic demand in kJ/day. The rate at 
which prey are consumed when rare is given by its feeding rate 
f low, which should be well approximated by a linear functional 
response at low prey densities (i.e., flow = aNlow, where a is the 
space clearance rate and Nlow the low prey density) (Coblentz 
et  al.  2023; Novak et  al.  2024). E is the energy density of the 
prey in kJ/g, and MN is the mass of the prey in grams to convert 
the number of prey eaten to the mass of prey eaten. Although 
we do not explicitly account for lost or otherwise unassimilated 
prey energy due to undigestible parts, faeces, urine, etc. (Yodzis 
and Innes  1992), these processes could easily be included in 
Equation (1) by adjusting the prey energy density or mass.

The second rule that a predator's feeding rate should saturate near 
the highest prey densities it experiences can be formalised as

where IS is the degree of saturation (ranging between 0 and 1) 
and h is the handling time (i.e., the reciprocal of the maximum 
feeding rate) (Coblentz et al. 2023). Assuming a Holling Type II 
functional response, fhigh =

aNhigh

1+ahNhigh

, where Nhigh is the high 
density of prey likely to be experienced by the predator. IS also 
may be interpreted as the fraction of time a predator individual 
is busy handling prey, or as the fraction of individuals in a pred-
ator population handling prey at any given point in time assum-
ing a steady-state (Supporiting Information) (Coblentz 
et al. 2021; Lafferty et al. 2015; Novak et al. 2017). We focus on 
the Holling Type II version of the functional response over the 
Michaelis–Menten form (i.e., f = fmaxN

c+N
 where f  is the feeding 

rate, fmax is the maximum feeding rate and c is the half-saturation 
constant or the prey density at which f = 1

2
fmax). We do so for 

two reasons. First, the Holling Type II functional response pa-
rameters have clear mechanistic interpretations: a is the space 
that would be cleared by a predator in the absence of a time cost 
to handling prey, and h is the time taken away from searching 
for prey once a prey is captured. Second, the parameters of the 
Holling Type II functional response have practical interpreta-
tions related to feeding rates at high and low prey densities: a is 
the slope of the functional response at the origin, and 1

h
 is the 

maximum feeding rate.

Given Equations (1) and (2), we solve for the space clearance rate 
and handling time as

and

2.1   |   Auxiliary Predictions

Beyond providing equations for the space clearance rate and 
handling time parameters, Equations  (1) and (2) also make 

(1)D = flowEMN

(2)IS = fhighh

(3)a =
D

NlowEMN

(4)h =
ISNlowEMN

DNhigh

(

1 − IS
)
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auxiliary predictions. Here, we focus on three of these related to 
(i) the degree of feeding rate saturation across prey densities ex-
perienced by predators, (ii) the relationship between space clear-
ance rates and handling times and (iii) the allometric scaling of 
space clearance rates and handling times.

(i) Regarding the saturation of predator feeding rates with prey 
densities, we assume that the functional response is unsaturated 
at low prey densities and approaches saturation at the high prey 
densities experienced by predators (Equations 1 and 2). Given 
these two assumptions, we also can assess the prey density at 
which the predator's feeding rate is half saturated. This occurs 
when the prey density is equal to 1

ah
 (the half saturation constant 

in the Michalis-Menten formulation). Using Equations  (3) and 
(4), we solve for the half saturation constant as

Thus, our theory predicts that, despite different predators expe-
riencing different ranges of prey densities, their degree of satu-
ration across those density ranges is invariant.

(ii) Regarding the relationship between space clearance rates 
and handling times, it follows from Equation  (5) that a and h 
are related as

and taking the natural log of both sides,

Our theory therefore predicts an inverse (or negative log–log-
linear) relationship between space clearance rates and handling 
times among predators feeding on prey with similar high pop-
ulation sizes.

(iii) Last, several of the parameters on the right-hand sides of 
Equations  (3) and (4) have well-known scaling relationships 
with species' body masses. Specifically, energetic demand de-
fined as predator metabolic rate scales with predator mass 
(Kleiber's Law; Brown et al. 2004; Kleiber 1932) and prey densi-
ties scale with prey mass (Damuth's Law; Damuth 1981). As we 
can treat the remaining parameters as unrelated to body size, 
this suggests that the theory outlined here should be capable of 
predicting the allometric scaling of a and h.

Below, we take advantage of the FoRAGE database of functional 
response experiments to examine the predictions of our theory 
(Uiterwaal et  al.  2022). We first combine FoRAGE with data-
bases on mass-abundance and metabolic scaling relationships 
to predict functional response parameters across most studies 
in FoRAGE. Then, for a subset of FoRAGE studies performed 
in the field, we examine our theory's ability to make predictions 
using system-specific information. Last, we examine the evi-
dence for the auxiliary predictions made by our theory.

3   |   Methods

3.1   |   Databases, Data Handling and Predictions

We evaluate the ability of our theory to predict functional re-
sponse parameters by comparing measured functional response 
parameters to predictions derived using estimates of the pa-
rameters on the right-hand sides of the equations. To do so, we 
bring together two databases: the FoRAGE compilation from 
Uiterwaal et  al.  (2022) and a data compilation of eukaryotic 
species' masses, metabolic rates, and population densities from 
Hatton et al. (2019). FoRAGE contains functional response pa-
rameter estimates from 3013 functional response experiments 
along with additional information, including predator and prey 
body masses, for most studies. Thus, FoRAGE provides the mea-
sured space clearance rates and handling times and values for 
prey mass in wet weight (MN). To predict space clearance rates 
and handling times using Equations (3) and (4), we still require 
estimates of energetic demand (D), prey energy density (E), high 
and low prey densities (Nlow and Nhigh) and the degree of feeding 
rate saturation at high prey densities (IS).

To obtain estimates of low and high prey densities likely to be 
experienced by predators (Nlow and Nhigh), and predator energy 
demand (D), we combined FoRAGE with mass scaling data from 
Hatton et al. (2019). To estimate Nlow and Nhigh, we used the data 
from Hatton et al.  (2019) containing species' masses and their 
measured densities in aerial m2. These density estimates include 
density estimates from the same species in different places or 
times, as well as estimates across different species. We assume 
that the variation in the density data reflects both variation in 
prey densities a predator might experience over space and time 
and among rare and common species with similar masses. To 
estimate Nlow and Nhigh for the prey in FoRAGE, we performed 
Bayesian log–log regressions of density on mass separately for 
prokaryotes (n = 635), protists (n = 301), invertebrates (n = 778), 
ectotherm vertebrates (n = 404), mammals (n = 2852) and birds 
(n = 603). Using the prey classifications and masses in FoRAGE, 
we then estimated the posterior predictive distribution for each 
study-specific prey and extracted the 10th and 90th percentiles 
as estimates of Nlow and Nhigh, respectively. To estimate D, we 
performed Bayesian log–log regressions of basal metabolic rate 
in kJ/d on predator mass in g separately for protists (n = 365), 
invertebrates (n = 4559), ectotherm vertebrates (n = 616), mam-
mals (n = 1059), and birds (n = 492). We then used the median 
predicted metabolic rate of each predator in FoRAGE based on 
its classification and mass as our estimate of D. For the Bayesian 
regressions, we used flat priors on the intercept and slope, and 
a Student-t prior with degrees of freedom = 3, location = 0, and 
scale = 2.5 on the standard deviation. We approximated the 
posterior distribution using 1000 samples each from 4 Markov 
chains after a 1000 sample warmup. We performed the regres-
sions using the R package ‘brms’ (Bürkner  2017) using Stan 
(Stan Development Team 2024) through the backend cmdstanr 
(Gabry et al. 2024).

With estimates of Nlow, Nhigh, and D, we then needed estimates 
of E and IS. We assume that these values are approximately 
constant, setting E = 5.6 kJ/g wet weight following Brown 
et al. (2018) and IS = 0.9 (i.e., feeding rates saturated at 90% of 
their maximum). Our results are not sensitive to reasonable 

(5)1

ah
=

(

1 − IS
)

Nhigh

IS

(6)a =
IS

(

1 − IS
)

Nhighh

(7)ln(a) = ln

(

IS
(

1 − IS
)

Nhigh

)

− ln(h)
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choices of values for IS or for the percentiles used for Nlow and 
Nhigh (see Supporting Information).

Although the full FoRAGE database contains 3013 experiments, 
we restricted our predictions to:

1.	 Studies include living prey that are not eggs. We do not in-
clude studies using eggs as prey as it is unclear whether 
mass scaling relationships apply to eggs.

2.	 Studies with handling time estimates greater than 1 × 10−6 
days. We did so following previous studies suggesting that 
studies within FoRAGE with lower values than this cut-
off are those for which Type II functional responses have 
poor fits (Coblentz et al. 2023; Kiørboe and Thomas 2020; 
Uiterwaal and DeLong 2020).

3.	 Studies with both predator and prey masses. We excluded 
studies without this information because it is what allows 
a link between the FoRAGE database and empirical mass 
scaling relationships.

After excluding the studies that did not meet these criteria, we 
were left with 2162 functional response measurements.

Combining the estimates of Nlow, Nhigh, D, E, and IS, we pre-
dicted the space clearance rates and handling times for each 
predator–prey pair in the reduced version of FoRAGE. We com-
pared these predictions to observed values using reduced major 
axis regression with the R package ‘lmodel2’ (Legendre 2018).

3.2   |   Field-Study Specific Predictions

Forty of the 2162 FoRAGE experiments in our reduced dataset were 
performed in the field. Because these field studies include high and 
low abundances of prey observed during the studies, they provide 
an opportunity to test functional response parameter predictions 
using system-specific information rather than mass scaling rela-
tionships. To avoid circularity, we excluded studies that estimated 
predator kill rates using the proportion of predator diets consisting 
of a prey type coupled with the average mass of that prey and the 
predator's daily energetic demand to estimate the number of prey 
consumed per day. For the remaining studies, we performed a lit-
erature search to find information on predator energetic demand 
(D) and prey energy density (E). For energy demand, we used es-
timates of daily energy expenditure, if available. Otherwise, we 
used basal metabolic rate. For energy density, we used species-
specific estimates of kJ/g if they were available. Otherwise, we 
used studies of prey body composition that gave the percent of prey 
body mass composed of protein and fat. We used conversions of 
16.74 kJ/g for protein and 33.47 kJ/g for fat to calculate prey energy 
density (Chizzolini et al. 1999; Menzies et al. 2022). We were able 
to find the requisite information for seven studies of six mam-
malian predator–prey pairs. For these studies, we assumed the 
highest and lowest recorded prey densities as estimates of Nlow 
and Nhigh. Details and references for the estimates are given in 
the Supporting Information. As the estimate of mass, we used the 
mass in FoRAGE (Uiterwaal et al. 2022). FoRAGE presents the 
mass reported in the original study where possible, but if the mass 
was not available from the original study, the authors of FoRAGE 
took a stepwise process to estimate masses, for example, using 

length–mass relationships or data from sources other than the 
original study [for details see Uiterwaal et al. (2022)].

3.3   |   Auxiliary Predictions

	 i.	 To examine whether our theory's predicted relationship 
between the predator's half-saturation constant and prey 
densities held, we used the values of the space clearance 
rates and handling times from FoRAGE and the mass-
abundance scaling prediction for high prey abundances. 
To assess the accuracy of the predictions, we calculated 
the correlation and performed a major axis regression on 
the observed versus predicted half-saturation constants.

	 ii.	 To examine our theory's prediction of the relationship be-
tween space clearance rates and handling times given IS 
and the high density of the prey, we used the values of the 
space clearance rates and handling times from FoRAGE 
and the mass–abundance scaling predictions of the high 
prey abundances. To assess the accuracy of the prediction 
of the relationship between space clearance rates and han-
dling times, we calculated the correlation and performed 
a major axis regression on the observed versus predicted 
space clearance rates.

	iii.	 To assess whether our theory could predict the allometric 
scaling of space clearance rates and handling times, we de-
rived equations for the scaling of space clearance rates and 
handling times, assuming that predator energy demand (D) 
has a power-law scaling with predator mass, that low and 
high prey densities (Nlow and Nhigh) scale with prey mass, 
and that predator and prey masses scale with one another. 
We assumed the other variables are constants unrelated to 
predator or prey mass. Derivations of these equations are 
given in the Supporting Information. We then used log–log 
least squares regressions to test our predictions, obtaining 
estimates of the empirical relationships within FoRAGE 
across the different classifications used in the mass-
abundance and mass-metabolism regressions between prey 
masses and abundances, predator masses and energy de-
mand, and predator and prey masses (see Section 3.1).

All analyses were performed in R using v. 4.3.1 (R Core 
Team 2023).

4   |   Results

4.1   |   Prediction of a and h

The two rules performed well in predicting empirically estimated 
space clearance rate and handling time values across their respec-
tive 19 and 8 orders of magnitude in variation (Figure 1; log space 
clearance rate correlation coefficient = 0.82, R2 of 1:1 line = 0.81; 
log handling time correlation coefficient = 0.57, R2 of 1:1 
line = 0.75). The major axis regression slopes between observed 
and predicted space clearance rates (ß = 0.85, 95% Confidence 
Interval [CI] = 0.82, 0.87) and handling times (ß = 1.14, 95% 
CI = 1.08, 1.22) suggest a tendency for the slight overestimation 
of space clearance rates and underestimation of handling times 
at low values, and the underestimation of space clearance rates 
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and overestimation of handling times at high values (Figure 1). 
Alternative means for determining low and high prey densities 
and levels of predator saturation shift the points in Figure 1, but 
do not influence the predictive power of the two rules (Supporting 
Information). Indeed, the tendency for over/under-estimation 
likely reflects insightful across-system variation not reflected in 
estimates from mass-scaling relationships (see below).

We also predicted the functional response parameters for the 
subset of the studies that were field studies. For the seven stud-
ies of mammalian predators, we again find that the predictions 
fall near the 1:1 line but without the same systematic tendency 
for over-/underestimation (Figure 1C,D).

4.2   |   Auxiliary Predictions

	 i.	 The relationship between the empirical half-saturation 
constant values and high prey densities, modified by 
the degree of saturation, supports our theory's predic-
tion (correlation = 0.86, slope of major axis regression 
[95% CI] = 0.88 (0.86, 0.9), Figure 2A; see the Supporting 
Information for a sensitivity analysis).

	 ii.	 Space clearance rates and handling times were inversely 
related to each other when accounting for the high prey 
densities (Figure  2B,C). Without accounting for the high 
prey densities, there is little apparent relationship between 
space clearance rates and handling times (Figure  2B). 
However, once the high prey densities are accounted for, 

the negative relationship between space clearance rates 
and handling times is evident (see the colour coding in 
Figure  2B). Examining the prediction of the relationship 
between handling times modified by high prey densities 
and the degree of predator feeding rate saturation at high 
prey densities supports our theory's prediction, albeit with 
a tendency to underpredict the space clearance rates (cor-
relation = 0.84, intercept of major axis regression [95% 
CI] = −1.5 [−1.6, −1.4], slope of major axis regression [95% 
CI] = 1.07 [1.04, 1.1]).

	iii.	 Space clearance rates and handling times scale with preda-
tor and prey body masses as predicted. Specifically, the em-
pirical scaling of the parameters we consider as being related 
to body size (those besides IS and E) are Nlow ∝M−0.94

N
, 

Nhigh ∝M−0.9
N

, and D ∝M0.87
P

 where MP is the mass of the 
predator and the other parameters are defined above. Given 
these scaling relationships and the first rule, it follows that 
the allometric relationship for the space clearance rate 
should be a ∝M0.87

P
M−0.06

N
. Given that in the dataset 

MN ∝M0.79
P

, we therefore predict that a ∝M0.82
P

. This predic-
tion matches the observed scaling of a ∝M0.8

P
 (95% CI = 0.78, 

0.83; Figure  3A). Similarly, the allometric relationship for 
handling time should be h ∝M0.96

N
M−0.87

P
. Thus, we predict 

h

MN

∝M−0.87
P

. This prediction also matches the observed scal-

ing of h

MN

∝M−0.85
P

 (95% CI = −0.87, −0.82; Figure  3B; See 

Supporting Information for derivations of scaling 
relationships).

FIGURE 1    |    Two simple rules derived from predator feeding rates at low and high prey densities predict space clearance rates and handling 
times using either generic estimates from empirical mass scaling relationships (A, B) or system-specific estimates from field studies (C, D). Dashed 
lines are 1:1 lines, solid lines are major axis regressions, and the grey ribbons around the solid lines in A and B are 95% confidence intervals. See the 
Supporting Information for versions of panels A and B with colour-coded predator and prey body size information.
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5   |   Discussion

We demonstrate that two simple rules predict the parameters 
of predator functional responses and their scaling relationships. 
In contrast to prior work, our theory provides an ultimate ex-
planation for the strengths of trophic interactions rather than 
focusing on proximate mechanisms (e.g., predator and prey en-
counter rates, capture successes, etc.). Our approach generates 
predictions of space clearance rates of predators with similar 
accuracy as prior theory (i.e., most predictions within ~3 orders 
of magnitude of the observed values; Pawar et al. 2012; Portalier 
et al. 2022), but also predicts handling times, which have been 
predicted poorly by previous work (Portalier et al. 2022). In ad-
dition, our theory offers two practical advantages. First, it uses 
parameters that are generally easier to measure than those re-
quired by previous theory (e.g., predator movement velocities 
and prey detection distances). Second, our theory's founda-
tion in ultimate causes suggests potential applications beyond 

environmental conditions and taxa in which trophic interaction 
strengths have been measured, addressing a limitation of cur-
rent statistical approaches to prediction (DiFiore and Stier 2023).

Our two rules emerge from a view of functional responses as 
products of a long-term eco-co-evolutionary process involving 
predators, their prey, and the environment including the effects 
of other species and their interactions (DeLong 2020; Gutiérrez 
Al-Khudhairy and Rossberg  2022; Wickman et  al.  2024). A 
predator's fitness depends not only on its ability to procure 
food; it also depends on its ability to avoid its own predators, 
find mates, etc. (Jeschke 2007). Therefore, we suggest that eco-
evolutionary processes combine such that trophic interaction 
strengths reflect the ability of a predator to minimally meet en-
ergetic demands during busts of low prey densities while also 
taking advantage of instances of booms of high prey densities. 
This contrasts with previous work focusing on the optimisa-
tion of space clearance rates and handling times to maximise 

FIGURE 2    |    Two simple rules predict empirical estimates of the half-saturation constant (1/ah) suggesting consistent patterns of feeding rate sat-
uration among predators (A), as well as the relationship between space clearance rates and handling times (B, C) suggesting predators eating prey of 
a given size with higher space clearance rates have lower handling times. The dashed lines in A and C are the 1:1 lines and the solid lines are major 
axis regressions. The lines in B are the predicted relationships between space clearance rates and handling times for different values of Nhigh. See the 
Supporting Information for versions of panels A with colour-coded predator and prey body size information.

FIGURE 3    |    Two simple rules predict the allometric scaling of predator functional response parameters. Functional response rules and empirical 
scaling relationships between parameters and prey and predator masses predict that the log space clearance rate increases with log predator mass 
with a slope of 0.82 (observed empirical estimate: 0.8, A) and that the log of the prey mass-specific handling time (handling time/prey mass) decreases 
with log consumer mass with a slope of −0.87 (observed empirical estimate: −0.86; B). See the Supporting Information for versions of the panels with 
colour-coded predator and prey body size information.
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energy intake. This view also may help explain why consum-
ers tend not to overexploit their prey (Gutiérrez Al-Khudhairy 
and Rossberg  2022; Vuorinen et  al.  2021). As many complex 
behaviours and phenotypes are the product of multiple traits 
under multiple selective pressures, our approach of focusing on 
functional outcomes rather than specific processes may offer a 
way forward for understanding and predicting other complex 
phenotypes such as thermal responses and competitive abilities 
and their resulting ecological scaling relationships.

The theory developed here also makes predictions beyond the 
values of space clearance rates and handling times. The first 
is the prediction that predators show consistent patterns in 
how their feeding rates saturate across prey densities: feeding 
rates are largely unsaturated at low prey densities, reach half-
saturation at an intermediate fraction of the highest prey densi-
ties, and only become fully saturated at the highest prey densities 
encountered. This result is consistent with that of Coblentz 
et al. (2023) who found that predator feeding rates were gener-
ally unsaturated at the typical prey densities predators are likely 
to experience. Indeed, given the highly skewed frequencies of 
species abundances spatially and temporally in nature (Brown 
et al. 1995; Halley and Inchausti 2002), the predicted prey den-
sity at which half-saturation occurs within our data is typically 
2.4 times higher (standard deviation = 0.4) than the predicted 
median prey density. This suggests that predators only rarely 
feed near their maximum feeding rates, implying that preda-
tion pressure should dynamically change with changes in prey 
densities.

The second auxiliary prediction from our theory is a negative 
relationship between space clearance rates and handling times, 
a pattern previously found by Kiørboe and Thomas  (2020). 
These authors interpreted this relationship as a slow–fast con-
tinuum in trophic interactions that appeared to contradict the 
gleaner-opportunist tradeoff—a fundamental ecological con-
cept that helps explain species coexistence under variable re-
sources (Armstrong and McGehee  1980; Grover  1990). Under 
the gleaner-opportunist tradeoff, ‘gleaners’ perform better at 
low resource levels while ‘opportunists’ take advantage of high 
resource situations. If ingestion rates directly determine growth 
rates, the gleaner-opportunist tradeoff would predict a positive 
relationship between space clearance rates and handling times 
(Kiørboe and Thomas 2020), a pattern that is opposite to that 
which we and Kiørboe and Thomas (2020) observed. Our results 
provide a potential resolution to this apparent contradiction by 
considering predator energy demand. Our theory suggests that 
the negative relationship between space clearance rates and han-
dling times for predators consuming similarly sized prey occurs 
due to differences in energy demand—energy demand appears 
in the numerator and denominator of the equations for space 
clearance rates and handling times, respectively. Thus, preda-
tors with higher energy demands exhibit higher space clearance 
rates and lower handling times, whereas predators with lower 
energy demands exhibit the opposite pattern. Although high-
energy-demand predators may consume more prey at low prey 
availability, they also incur higher energetic costs under these 
conditions compared to low-energy-demand predators. This en-
ergetic tradeoff provides a mechanism for the co-occurrence of 
a gleaner-opportunist tradeoff with the presence of a slow-fast 
continuum in functional responses parameter.

The third auxiliary prediction from our theory is the allometric 
scaling of space clearance rates and handling times that play a 
central role in dynamical food web models (Brose et al. 2006; 
Otto et al. 2007; Yodzis and Innes 1992). Existing allometric scal-
ing relationships of functional response parameters generally 
fall into two groups. The first are studies following Yodzis and 
Innes (1992) who argued that predators' maximum feeding rates 
should scale with predator mass to the same exponent as meta-
bolic rate and that the half-saturation constant in units of prey 
mass is independent of prey and predator masses. Translating 
this scaling to our own, we find that the two approaches pre-
dict similar allometric scaling estimates (prey-mass specific 
scalings of handling times of −0.87 under both approaches and 
space clearance rate scalings of 0.82 in our theory and 0.87 for 
Yodzis and Innes (1992); Supporting Information S6). Although 
this convergence in predictions is likely due to the central role 
played by predator metabolic rate scaling, we note that our ap-
proach also predicts the pre-factor of the relationship (Figure 3) 
and provides a potential explanation for the lack of allometric 
scaling of the half-saturation constant that is left unexplained 
in Yodzis and Innes (1992). The second group of allometric scal-
ing relationships focuses on the space clearance rate (McGill 
and Mittelbach  2006; Pawar et  al.  2012; Rall et  al.  2012) and 
derives different scaling relationships between space clearance 
rates and predator mass depending on whether predators and 
prey interact in two or three dimensions. These studies predict 
that space clearance rates scale with predator body mass to an 
exponent between 0.58–0.68 in two dimensions and 0.92–1.07 in 
three dimensions. Our predicted and observed scaling exponent 
of 0.82 falls between these ranges. Unfortunately, we cannot de-
rive dimension-specific allometric scaling relationships using 
our current data because the dataset from which we derive our 
abundance estimates (Hatton et al. 2019) is in a single dimen-
sion (aerial m2) and does not have information on the dimension 
in which organisms live or interact with their predators. Future 
work incorporating dimension-specific scaling relationships 
into our theory will thus be useful for integrating the ultimate 
and proximate mechanisms determining trophic interaction 
strengths.

The rules we derive make testable predictions regarding how 
the environment and global climate change are likely to influ-
ence trophic interaction strengths, as many of the parameters 
describing our rules are sensitive to the environment. For ecto-
therms, predator energetic demand is expected to increase with 
increasing temperature (Brown et al. 2004), whereas prey pop-
ulation size, body size and potentially energy density are likely 
to decrease (Amarasekare and Savage  2012; Atkinson  1994; 
Bernhardt et al. 2018; Brett et al. 1969; Outhwaite et al. 2022). 
These changes will alter the functional response parameters 
required to satisfy our rules, suggesting the potential for mal-
adaptive trophic interactions under climate change. Changes 
in parameters also occur over other environmental gradients, 
such as productivity gradients (Novak 2013), which may allow 
for the prediction of changes in top–down interaction strengths 
and their ecosystem consequences. Furthermore, although our 
analyses focused on interspecific differences in trophic interac-
tions, this theory also may be applicable to intraspecific varia-
tion in predators and prey to explain intraspecific variation in 
functional response parameters (Bolnick et  al.  2011; Coblentz 
et al. 2021).
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The success of our theory in predicting functional response pa-
rameters opens several promising directions for future theoret-
ical and empirical insights into trophic interaction strengths. 
First, our theory provides predictions about which trophic in-
teractions within communities are likely to be strong, helping 
to identify potential keystone interactions that may dispropor-
tionately impact communities. Second, although our theory 
has focused on pairwise trophic interactions, it provides the 
foundation for a theory on generalist predators to embrace the 
additional complexity present in food webs in which predators 
consume multiple prey species. Last, although we have focused 
specifically on traditional predators, it may be possible to extend 
the theory to other consumer types such as herbivores, detriti-
vores, and parasites. By deepening our understanding of the ul-
timate causes governing trophic interaction strengths, this work 
promises to provide important insights into the functioning and 
dynamics of ecosystems and their responses to ongoing global 
change.

Author Contributions

K.E.C., M.N., and J.P.D. designed the research. K.E.C. developed the 
theory with input from M.N. and J.P.D., performed the analyses, and 
wrote the first draft of the manuscript. All authors contributed to 
revisions.

Acknowledgements

K.E.C. and J.P.D. were partially supported by a James S. McDonnel 
Foundation Studying Complex Systems Scholar grant and a National 
Science Foundation Organismal Responses to Climate Change (ORCC-
2307464) grant to J.P.D. M.N. was supported by a National Science 
Foundation Division of Environmental Biology grant (DEB-2129758).

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

All data and code for analysing data are permanently archived at: 
https://​doi.​org/​10.​5281/​zenodo.​15121686.

Peer Review

The peer review history for this article is available at https://​www.​webof​
scien​ce.​com/​api/​gatew​ay/​wos/​peer-​review/​10.​1111/​ele.​70126​.

References

Abrams, P. A. 1982. “Functional Responses of Optimal Foragers.” 
American Naturalist 120: 382–390.

Amarasekare, P. 2022. “Ecological Constraints on the Evolution of 
Consumer Functional Responses.” Frontiers in Ecology and Evolution 
10: 836644.

Amarasekare, P., and V. Savage. 2012. “A Framework for Elucidating 
the Temperature Dependence of Fitness.” American Naturalist 179: 
178–191.

Armstrong, J. B., and D. E. Schindler. 2011. “Excess Digestive Capacity 
in Predators Reflects a Life of Feast and Famine.” Nature 476: 84–87.

Armstrong, R. A., and R. McGehee. 1980. “Competitive Exclusion.” 
American Naturalist 115: 151–170.

Atkinson, D. 1994. “Temperature and Organism Size—A Biological 
Law for Ectotherms?” In Advances in Ecological Research, edited by M. 
Begon and A. H. Fitter, 1–58. Academic Press.

Bernhardt, J. R., J. M. Sunday, and M. I. O'Connor. 2018. “Metabolic 
Theory and the Temperature-Size Rule Explain the Temperature 
Dependence of Population Carrying Capacity.” American Naturalist 
192: 687–697.

Bolnick, D. I., P. Amarasekare, M. S. Araújo, et  al. 2011. “Why 
Intraspecific Trait Variation Matters in Community Ecology.” Trends in 
Ecology & Evolution 26: 183–192.

Brett, J. R., J. E. Shelbourn, and C. T. Shoop. 1969. “Growth Rate and 
Body Composition of Fingerling Sockeye Salmon, Oncorhynchus nerka, 
in Relation to Temperature and Ration Size.” Journal of the Fisheries 
Research Board of Canada 26: 2363–2394.

Brose, U., R. J. Williams, and N. D. Martinez. 2006. “Allometric 
Scaling Enhances Stability in Complex Food Webs.” Ecology Letters 9: 
1228–1236.

Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West. 
2004. “Toward a Metabolic Theory of Ecology.” Ecology 85, no. 7: 1771–
1789. https://​doi.​org/​10.​1890/​03-​9000.

Brown, J. H., C. A. S. Hall, and R. M. Sibly. 2018. “Equal Fitness 
Paradigm Explained by a Trade-Off Between Generation Time and 
Energy Production Rate.” Nature Ecology & Evolution 2: 262–268.

Brown, J. H., D. W. Mehlman, and G. C. Stevens. 1995. “Spatial Variation 
in Abundance.” Ecology 76: 2028–2043.

Bürkner, P.-C. 2017. “Brms: An R Package for Bayesian Multilevel 
Models Using Stan.” Journal of Statistical Software 80, no. 1: 1–28. 
https://​doi.​org/​10.​18637/​​jss.​v080.​i01.

Chizzolini, R., E. Zanardi, V. Dorigoni, and S. Ghidini. 1999. “Calorific 
Value and Cholesterol Content of Normal and Low-Fat Meat and Meat 
Products.” Trends in Food Science & Technology 10: 119–128.

Coblentz, K. E., S. Merhoff, and M. Novak. 2021. “Quantifying the 
Effects of Intraspecific Variation on Predator Feeding Rates Through 
Nonlinear Averaging.” Functional Ecology 35: 1560–1571.

Coblentz, K. E., M. Novak, and J. P. DeLong. 2023. “Predator Feeding 
Rates May Often Be Unsaturated Under Typical Prey Densities.” Ecology 
Letters 26: 302–312.

Damuth, J. 1981. “Population Density and Body Size in Mammals.” 
Nature 290: 699–700.

de Ruiter, P. C., A.-M. Neutel, and J. C. Moore. 1995. “Energetics, 
Patterns of Interaction Strengths, and Stability in Real Ecosystems.” 
Science 269: 1257–1260.

DeLong, J. P. 2020. “Detecting the Signature of Body Mass Evolution in 
the Broad-Scale Architecture of Food Webs.” American Naturalist 196: 
443–453.

DeLong, J. P. 2021. Predator Ecology: Evolutionary Ecology of the 
Functional Response. Oxford University Press.

DeLong, J. P., and K. E. Coblentz. 2022. “Prey Diversity Constrains the 
Adaptive Potential of Predator Foraging Traits.” Oikos 2022: e08800.

DiFiore, B. P., and A. C. Stier. 2023. “Variation in Body Size Drives 
Spatial and Temporal Variation in Lobster–Urchin Interaction 
Strength.” Journal of Animal Ecology 92: 1075–1088.

Gabry, J., R. Češnovar, A. Johnson, and S. Bronder. 2024. “cmdstanr: R 
Interface to ‘CmdStan’.”

Grover, J. P. 1990. “Resource Competition in a Variable Environment: 
Phytoplankton Growing According to Monod's Model.” American 
Naturalist 136: 771–789.

Gutiérrez Al-Khudhairy, O. U., and A. G. Rossberg. 2022. “Evolution 
of Prudent Predation in Complex Food Webs.” Ecology Letters 25: 
1055–1074.

 14610248, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.70126, W

iley O
nline L

ibrary on [30/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.5281/zenodo.15121686
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/ele.70126
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/ele.70126
https://doi.org/10.1890/03-9000
https://doi.org/10.18637/jss.v080.i01


9 of 9

Halley, J., and P. Inchausti. 2002. “Lognormality in Ecological Time 
Series.” Oikos 99: 518–530.

Hatton, I. A., A. P. Dobson, D. Storch, E. D. Galbraith, and M. Loreau. 
2019. “Linking Scaling Laws Across Eukaryotes.” Proceedings of the 
National Academy of Sciences 116: 21616–21622.

Holling, C. S. 1959. “The Components of Predation as Revealed by a 
Study of Small-Mammal Predation of the European Pine Sawfly1.” 
Canadian Entomologist 91, no. 5: 293–320. https://​doi.​org/​10.​4039/​
Ent91​293-​5.

Jeschke, J. M. 2007. “When Carnivores Are ‘Full and Lazy’.” Oecologia 
152, no. 2: 357–364. https://​doi.​org/​10.​1007/​s0044​2-​006-​0654-​2.

Jeschke, J. M., M. Kopp, and R. Tollrian. 2004. “Consumer-Food 
Systems: Why Type I Functional Responses Are Exclusive to Filter 
Feeders.” Biological Reviews 79: 337–349.

Kiørboe, T., and M. K. Thomas. 2020. “Heterotrophic Eukaryotes Show a 
Slow-Fast Continuum, Not a Gleaner–Exploiter Trade-Off.” Proceedings 
of the National Academy of Sciences 117: 24893–24899.

Kleiber, M. 1932. “Body Size and Metabolism.” Hilgardia 6: 315–353.

Lafferty, K. D., G. DeLeo, C. J. Briggs, A. P. Dobson, T. Gross, and A. 
M. Kuris. 2015. “A General Consumer–Resource Population Model.” 
Science 349: 854–857.

Legendre, P. 2018. “lmodel2: Model II Regression.”

McCann, K., A. Hastings, and G. R. Huxel. 1998. “Weak Trophic 
Interactions and the Balance of Nature.” Nature 395: 794–798.

McCann, K. S. 2011. Food Webs (MPB-50). Food Webs (MPB-50). 
Princeton University Press.

McGill, B. J., and G. G. Mittelbach. 2006. “An Allometric Vision and 
Motion Model to Predict Prey Encounter Rates.” Evolutionary Ecology 
Research 8: 691–701.

McWilliams, S. R., and W. H. Karasov. 2001. “Phenotypic Flexibility 
in Digestive System Structure and Function in Migratory Birds and Its 
Ecological Significance.” Comparative Biochemistry and Physiology Part 
A: Molecular & Integrative Physiology, the Physiological Consequences of 
Feeding in Animals 128, no. 3: 577–591. https://​doi.​org/​10.​1016/​S1095​-​
6433(00)​00336​-​6.

Menzies, A. K., E. K. Studd, J. L. Seguin, et al. 2022. “Activity, Heart 
Rate, and Energy Expenditure of a Cold-Climate Mesocarnivore, the 
Canada Lynx (Lynx canadensis).” Canadian Journal of Zoology 100: 
261–272.

Novak, M. 2013. “Trophic Omnivory Across a Productivity Gradient: 
Intraguild Predation Theory and the Structure and Strength of Species 
Interactions.” Proceedings of the Royal Society B: Biological Sciences 280: 
20131415.

Novak, M., K. E. Coblentz, and J. P. DeLong. 2024. “In Defense of the 
Type I Functional Response: The Frequency and Population-Dynamic 
Effects of Feeding on Multiple Prey at a Time.”

Novak, M., C. Wolf, K. E. Coblentz, and I. D. Shepard. 2017. “Quantifying 
Predator Dependence in the Functional Response of Generalist 
Predators.” Ecology Letters 20: 761–769.

Okuyama, T. 2010. “Prey Density-Dependent Handling Time in a 
Predator–Prey Model.” Community Ecology 11: 91–96.

Otto, S. B., B. C. Rall, and U. Brose. 2007. “Allometric Degree 
Distributions Facilitate Food-Web Stability.” Nature 450: 1226–1229.

Outhwaite, C. L., P. McCann, and T. Newbold. 2022. “Agriculture and 
Climate Change Are Reshaping Insect Biodiversity Worldwide.” Nature 
605: 97–102.

Paine, R. T. 1992. “Food-Web Analysis Through Field Measurement of 
Per Capita Interaction Strength.” Nature 355: 73–75.

Pawar, S., A. I. Dell, and V. M. Savage. 2012. “Dimensionality of 
Consumer Search Space Drives Trophic Interaction Strengths.” Nature 
486: 485–489.

Portalier, S. M. J., G. F. Fussmann, M. Loreau, and M. Cherif. 2022. 
“Inferring Size-Based Functional Responses From the Physical 
Properties of the Medium.” Frontiers in Ecology and Evolution 9: 761984. 
https://​doi.​org/​10.​3389/​fevo.​2021.​761984.

R Core Team. 2023. R: A Language and Environment for Statistical 
Computing. R Foundation for Statistical Computing.

Rall, B. C., U. Brose, M. Hartvig, et al. 2012. “Universal Temperature 
and Body-Mass Scaling of Feeding Rates.” Philosophical Transactions 
of the Royal Society B 367: 2923–2934.

Secor, S. M., E. D. Stein, and J. Diamond. 1994. “Rapid Upregulation 
of Snake Intestine in Response to Feeding: A New Model of Intestinal 
Adaptation.” American Journal of Physiology. Gastrointestinal and Liver 
Physiology 266, no. 4 Pt 1: G695–G705. https://​doi.​org/​10.​1152/​ajpgi.​
1994.​266.4.​G695.

Solomon, M. E. 1949. “The Natural Control of Animal Populations.” 
Journal of Animal Ecology 18, no. 1: 1–35. https://​doi.​org/​10.​2307/​1578.

Stan Development Team. 2024. Stan Modeling Language Users Guide 
and Reference Manual, Version 2.35. Stan Development Team.

Uiterwaal, S. F., and J. P. DeLong. 2020. “Functional Responses Are 
Maximized at Intermediate Temperatures.” Ecology 101: e02975.

Uiterwaal, S. F., I. T. Lagerstrom, S. R. Lyon, and J. P. DeLong. 2022. 
“FoRAGE Database: A Compilation of Functional Responses for 
Consumers and Parasitoids.” Ecology 103: e3706.

Vucic-Pestic, O., B. C. Rall, G. Kalinkat, and U. Brose. 2010. “Allometric 
Functional Response Model: Body Masses Constrain Interaction 
Strengths.” Journal of Animal Ecology 79: 249–256.

Vuorinen, K. E. M., T. Oksanen, L. Oksanen, T. Vuorisalo, and J. D. 
M. Speed. 2021. “Why Don't All Species Overexploit?” Oikos 130: 
1835–1848.

Wickman, J., E. Litchman, and C. A. Klausmeier. 2024. “Eco-
Evolutionary Emergence of Macroecological Scaling in Plankton 
Communities.” Science 383: 777–782.

Yodzis, P. 1981. “The Stability of Real Ecosystems.” Nature 289: 674–676.

Yodzis, P., and S. Innes. 1992. “Body Size and Consumer–Resource 
Dynamics.” American Naturalist 139: 1151–1175.

Supporting Information

Additional supporting information can be found online in the 
Supporting Information section.  

 14610248, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.70126, W

iley O
nline L

ibrary on [30/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.4039/Ent91293-5
https://doi.org/10.4039/Ent91293-5
https://doi.org/10.1007/s00442-006-0654-2
https://doi.org/10.1016/S1095-6433(00)00336-6
https://doi.org/10.1016/S1095-6433(00)00336-6
https://doi.org/10.3389/fevo.2021.761984
https://doi.org/10.1152/ajpgi.1994.266.4.G695
https://doi.org/10.1152/ajpgi.1994.266.4.G695
https://doi.org/10.2307/1578

	Simple, Universal Rules Predict Trophic Interaction Strengths
	ABSTRACT
	1   |   Introduction
	2   |   Two Rules for Functional Responses
	2.1   |   Auxiliary Predictions

	3   |   Methods
	3.1   |   Databases, Data Handling and Predictions
	3.2   |   Field-Study Specific Predictions
	3.3   |   Auxiliary Predictions

	4   |   Results
	4.1   |   Prediction of a and h
	4.2   |   Auxiliary Predictions

	5   |   Discussion
	Author Contributions
	Acknowledgements
	Conflicts of Interest
	Data Availability Statement
	Peer Review
	References


