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Abstract
1.	 Theory suggests that intraspecific trait variation will alter species interaction 

strengths through nonlinear averaging when interaction strengths are nonlinear 
functions of individuals' traits. This effect is expected to be widespread, yet what 
factors mediate its magnitude in nature and hence its potential effects on ecosys-
tems and communities are unclear.

2.	 We sought to quantify how nonlinear predator functional responses, variation 
in prey densities and counteracting variation in attack rates and handling times 
among predator individuals of similar body size alter their population-level feed-
ing rates through nonlinear averaging in a natural system, and to determine the 
processes influencing the net magnitude of this effect.

3.	 We used a field caging experiment in the rocky intertidal of Oregon, USA to 
quantify attack-rate variation and feeding rates of the whelk Nucella ostrina on its 
barnacle and mussel prey. We also used empirically parameterized simulations to 
examine the effects of handling-time variation among individuals on population-
level feeding rates.

4.	 Within cages, individual attack-rate variation reduced population-level whelk 
feeding rates. However, the magnitude of this reduction differed among prey spe-
cies and cages depending on cage-specific magnitudes of attack-rate variation and 
functional-response nonlinearity. The inferred effects of handling-time variation 
among individuals were of smaller magnitude than those of attack-rate variation, 
yet counteracted them to cause a net weakening of the effect of individual attack-
rate variation on population-level feeding rates. Across cages, attack-rate and 
prey-density variation had non-additive effects that produced greater feeding-
rate reductions at the experiment scale relative to the cage scale.

5.	 Our results indicate that the effects of trait variation via nonlinear averaging depend 
critically on the features of systems that determine the magnitudes of nonlineari-
ties and trait variation. Because of counteracting trait variation, nonlinear-averaging 
effects may be quite complex, involving both the variances and covariances of all 
traits and environmental variables influencing the ecological process of interest.
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1  | INTRODUC TION

Trait variation among individuals within populations is ubiquitous, 
and its importance in ecology and evolution has long been known 
(Darwin, 1859; Polis, 1984). Renewed interest in intraspecific vari-
ation has led to several additional insights into trait variation's po-
tential consequences, particularly in community ecology (Bolnick 
et al., 2003, 2011; Violle et al., 2012). For example, recent theory 
shows that trait variation can influence the coexistence among com-
petitors (Hart et al., 2016), the strength and dynamics of predator–
prey interactions (Gibert & Brassil,  2014; Schreiber et  al.,  2011) 
and the structure of food webs (Gibert & DeLong, 2017). However, 
the development of theory on the ecological consequences of in-
traspecific variation has outpaced empirical studies, limiting our 
understanding of how trait variation is likely to affect ecological 
systems in nature.

A potentially widespread consequence of individual trait 
variation is the effect of nonlinear averaging on species inter-
action strengths (Bolnick et  al.,  2011; Gibert & Brassil,  2014; 
Okuyama, 2008). Nonlinear averaging is likely to influence species 
interaction strengths whenever interaction strengths are nonlinear 
functions of individuals' traits. When coupled with nonlinear func-
tions, variation in traits leads to nonlinear averaging because, for a 
nonlinear function of a trait, f(x), the average of the function over 
the traits of individuals, f (x), will not equal the function evaluated at 
the average of the trait, f (x) (Figure 1). For concave down functions, 
the average of the function applied to all individual traits will be less 
than the function evaluated at the average trait (Figure  1a), while 
for concave up functions, the average of the function will be greater 
than the function evaluated at the average (Figure  1b; this effect 
is also known as Jensen's inequality (Ruel & Ayres, 1999)). In terms 
of species interaction strengths, nonlinear averaging means that the 
overall strength of an interaction between species (i.e. at the popula-
tion level) is dependent not only on the average trait value exhibited 
by the individuals of the population, but also on the magnitude of 
trait variation among individuals and the shape of the relationship 
between the trait and the strength of the interaction. Furthermore, 
in terms of estimating population-level averages, nonlinear aver-
aging means that using among-individual averages or assuming all 

individuals are equivalent can lead to misleading population-level 
estimates.

Although nonlinear averaging is expected to influence many 
different interaction types, predator–prey interaction strengths 
are especially likely to be shaped by nonlinear averaging (Bolnick 
et  al.,  2011; Gibert & Brassil,  2014; Okuyama,  2008). This is be-
cause predator functional responses, which describe predator 
feeding rates, are almost universally nonlinear functions (Jeschke 
et  al.,  2004). In particular, predator functional responses are gen-
erally concave down with respect to predator attack rates and re-
source densities, and concave up with respect to predator handling 
times (as is the case in the Type II functional response of Holling 
(1959); Figure 1a,b). Therefore, while variation among individuals in 
attack rates, as well as spatial or temporal variation in resource den-
sities, should reduce a predator population's overall feeding rates, 
variation in handling times should increase the population's overall 
feeding rates for a given average attack rate, resource density or 
handling time (Bolnick et al., 2011; Okuyama, 2008).

While theory provides qualitative expectations on how individual 
variation in attack rates, handling times and resource densities should 
alter population-level feeding rates, it remains unclear how strong the 
effects of nonlinear averaging are likely to be under conditions in the 
field. Furthermore, it is also unclear under what circumstances the 
overall net effects of nonlinear averaging over individual trait varia-
tion are likely to decrease or increase feeding rates at the population 
level. This is particularly the case in the context of individual variation 
that is not associated with obvious traits. For example, intraspecific 
diet specialization is a widespread form of intraspecific variation 
whereby individuals with otherwise apparently identical character-
istics (e.g. similar body sizes) specialize on different resources and 
differ simultaneously in attack rates and handling times (Bolnick 
et al., 2003). In addition to such innate specialization, stochasticity 
itself—either in space or in time—can lead to diet differences among 
individuals and will be reflected in each individual's realized attack 
rates and handling times (Coblentz,  2020). While most readily ob-
servable differences among individuals, such as body size, have 
well-known relationships with predator attack rates and handling 
times and, therefore, predictable consequences through nonlinear 
averaging (Vucic-Pestic et al., 2010), the importance of more cryptic 

F I G U R E  1   When species interaction strengths are nonlinear functions of a species' trait, f(x), then the average interaction strength 
across the values of the species' trait, f(x), will not be equal to the interaction strength evaluated at the average of the species' trait f(x)
. (a) When the nonlinear function is concave up, f(x) < f(x), as is the case for predator feeding rates as a function of attack rates or resource 
densities. (b) When the nonlinear function is concave down, f(x) > f(x), as is the case for predator feeding rates as a function handling times
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forms of individual variation through nonlinear averaging is unclear. 
Quantitative estimates of the importance of these latter forms of in-
dividual variation would be useful for establishing baseline expecta-
tions for the magnitude of nonlinear-averaging effects.

Here, our goal was to quantify the effects of nonlinear averaging 
on predator feeding rates in the field. We use a field caging experi-
ment with the whelk Nucella ostrina feeding on the barnacle Balanus 
glandula and the mussel Mytilus trossulus to quantify the effects of 
nonlinear averaging on predator feeding rates. At the cage level, we 
use feeding observations of individuals to quantify individual attack 
rates and estimate the discrepancy between population-level feed-
ing rates estimated using the average feeding rate across individu-
als (f(x)) and the average feeding rate estimated using the average 
of individual attack rates (f(x); Figure 1a). Because we were unable 
to directly estimate individual handling times in the field, we used 
data from laboratory experiments and simulations to examine the 
potential effects of individual handling-time variation. Lastly, we 
contrasted the effects of nonlinear averaging on feeding rates within 
cages to the effect of joint attack-rate variation among individuals 
and prey densities across cages to gain insight into the relative im-
portance of individual-level and environmental variation.

2  | MATERIAL S AND METHODS

To quantify the effects of nonlinear averaging on whelk feeding rates, 
we combined data from a field caging experiment with measure-
ments of whelk handling times from a laboratory study. Below, we 
first describe the study system and field caging experiment. We then 
describe our observational method for estimating individual-level at-
tack rates (combining individual feeding observations and measure-
ments of prey densities from the field experiment with handling-time 
measurements from the laboratory experiment), and how we used 
these estimates to quantify the effects of individual attack-rate vari-
ation within the cages of our experiment. We then describe how we 
combined field-estimated attack rate, prey density and mean handling 
times with observed variation in handling times from the laboratory 
experiment to parameterize simulations with which we inferred the 
potential magnitudes of variation in handling times that could coun-
teract the effects of attack-rate variation on nonlinear averaging. 
Finally, we describe how we combined the individual attack-rate es-
timates, prey density estimates across cages and mean handling-time 
estimates to estimate the effects of simultaneous variation among 
individuals in attack rates and prey densities on the experiment-wide 
feeding rates of whelks, contrasting these experiment-wide effects 
with the effects we inferred at the within-cage level.

2.1 | Study system

Nucella ostrina is a common intertidal predator on rocky shores of 
the Northeast Pacific, feeding on a wide variety of different inver-
tebrate species. On the Oregon coast, its primary prey are the acorn 

barnacle Balanus glandula and the mussel Mytilus trossulus (hereafter 
referred to as barnacles and mussels; Novak et  al.,  2017). Several 
features make this system amenable to studying individual variation. 
First, N. ostrina feeds on barnacles and mussels by drilling through 
their shells or prying open their valves or opercula over the course of 
several hours, allowing for the identification of feeding events while 
predators are feeding. Second, because the barnacles and mussels 
are sessile, resource densities are easily estimated and manipulated. 
Third, whelks' shells are easily tagged, allowing individuals to be dis-
tinguished and tracked over time. Fourth, prior field studies have 
inferred the presence of individual diet variation in this and simi-
lar whelk species not attributable to observable traits (Burrows & 
Hughes, 1990; West, 1986, 1988; but see Coblentz et al., 2017).

2.2 | Field experiment

To examine the effects of nonlinear averaging on the strength of 
interactions between N. ostrina and its prey, we used a caging ex-
periment in the rocky intertidal at Yachats, Oregon, USA (44.3°N, 
124.1°W). In June 2015, we bolted twenty 25 cm × 35 cm stainless 
steel mesh cages with galvanized steel mesh lids into an early suc-
cessional patch in the mid-intertidal. To ensure differences among 
cages in prey densities, we divided each cage into a grid of ten 
7  cm  ×  12.5  cm rectangles and applied one of five treatments to 
four cages each, scraping either zero, two, four, six or eight randomly 
selected rectangles to bare rock.

Following the prey density manipulation, we added 30 individ-
ually tagged whelks from the surrounding area to each cage. All 
whelks measured 14.5–16.5 mm from their shell's apex to the base of 
the aperture, reflecting the median size of whelks at this site during 
the summer months. Reducing whelk size variation will have reduced 
individual overall attack-rate variation but was done to bring focus to 
the residual effects of diet specialization and stochasticity (Bolnick 
et al., 2003; Coblentz, 2020). We gathered individual feeding data 
by performing 22 low-tide surveys in mid-June through August and 
19 low-tide surveys in September for a total of 41 surveys. During 
each survey, we recorded whether each whelk was feeding or not. 
If the whelk was feeding, we recorded the identity and size of the 
prey and the method by which the whelk was feeding (drilling or pry-
ing). At the beginning, middle and end of the experiment, we took 
photographs of the cage interiors and estimated prey densities using 
ImageJ (Schneider et  al., 2012). We kept whelk densities constant 
within cages by replacing individuals that escaped or died.

2.3 | Statistical methods

2.3.1 | Quantifying individual attack rates and cage-
level effects of nonlinear averaging

To translate from the observational feeding surveys of individ-
ual whelks to measures of individual attack rates, we used the 
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attack-rate estimator derived by Novak and Wootton (2008) and 
Wolf et al. (2017). This estimator works by connecting feeding rates 
with the time period over which feeding events are detectable to 
an observer because these together determine the expected pro-
portion of time that individuals will be observable feeding (Novak 
et al., 2017). Although this approach has previously only been ap-
plied at the population level, it may also be applied at the level of 
individuals when longitudinal surveys are performed on the same in-
dividuals (see Appendix S1). Specifically, under the assumption that 
whelks exhibit a multispecies Holling Type II functional response 
(an appropriate characterization of whelk feeding rates when whelk 
densities are constant; Novak, 2010; Novak et al., 2017), the number 
of non-feeding observations of individual j in cage k (n0jk) and feeding 
observations on barnacles (nbjk) and mussels (nmjk) follow a multino-
mial distribution:

where pijk is the proportion of surveys of individual j in cage k in which it 
was observed feeding on prey i, p0jk is the proportion of surveys of indi-
vidual j in cage k that were non-feeding observations, hi is the handling 
time for prey i and Rik is the density of prey i in cage k (Appendix S1). 
With estimates of each of the proportions, handling times and resource 
densities, one can solve for an estimate of the individual attack rates:

Below, we explain how we estimated each of these components 
and combined them to estimate individual attack rates and the ef-
fects of their variation on feeding rates within cages.

We used a Bayesian approach to estimate the proportions of 
feeding and non-feeding observations pijk and p0jk rather than using 
the raw (i.e. observed) proportions because the latter can be biased 
(Coblentz et  al.,  2017). We did so by modelling each individual's 
numbers of feeding and non-feeding observations as being multino-
mially distributed following Wolf et al. (2017). We further assumed 
that all individual-level proportions had a cage-level Dirichlet dis-
tribution and then used a uniform Dirichlet prior to fit this model 
with the program JAGS (v. 4.3.0) through the r package ‘rjags’ (v. 
4.10, R version 4.0.3; Plummer, 2003, 2019; R Core Team, 2019). 
To approximate the posterior distributions of the model parame-
ters, we used 2,000 samples each from three Markov chains after a 
burn-in period of 100,000 iterations. We verified that the Markov 
chains had converged by examining trace plots of the model sam-
ples and the Gelman–Rubin statistic for the parameters (Gelman & 
Rubin, 1992).

As measurements of the prey densities in each cage, Rik, we used 
weighted averages of the prey densities over the course of the ex-
periment. We did so because the feeding surveys took place over 
months and, therefore, the feeding observations reflect individu-
als' feeding rates integrated over that time period. However, prey 

densities were not constant in cages over time: barnacle densities 
tended to increase due to recruitment and mussel densities tended 
to decrease through mortality. Furthermore, the feeding surveys 
themselves were not evenly spread over the length of the experi-
ment, with half of the surveys taking place within the last month of 
the experiment. Therefore, we used a weighted average of the den-
sities of the prey in each cage, with the final measurement of prey 
densities given twice the weight of the prey density measurements 
from the beginning and middle of the experiment. Because we used 
an average over the prey density measurements, we also restricted 
the whelk individuals included in the analysis to those that were ob-
served in at least 30 of the 41 surveys to ensure that the weighted 
average prey densities reflected the prey densities experienced by 
the whelks. Our inferences were robust to the use of different val-
ues for this cut-off.

To estimate field-based handling times on barnacles and mussels 
(hi in Equation 1), we combined data from the field-based feeding 
surveys with the measurements of whelk handling times obtained 
from a laboratory experiment. The handling times of individuals in 
the field could not be measured because individuals can only be ob-
served for a short period of time during low tide and whelk handling 
times on mussels and barnacles can regularly exceed 24 hr (Novak 
et al., 2017). In the laboratory experiment, the details of which can 
be found in Appendix  S2, we measured whelk handling times on 
barnacles and mussels, then used regressions to determine their re-
lationship with prey size, predator size and feeding method (e.g. drill-
ing versus prying). We then used the regression coefficients from 
the laboratory experiment to estimate the handling time of each 
feeding observation made in the field experiment given the sizes 
of the whelk and prey and the method of feeding involved in each 
observed foraging event. We then averaged across all these indi-
vidual handling times to generate an experiment-wide characteristic 
handling time for each prey species. (Below, we also describe simu-
lations to evaluate the effects of individual handling-time variation 
around the mean handling-time values.)

To quantify the effects of nonlinear averaging on feeding rates 
due to individual attack-rate variation, we first calculated individual 
attack rates. We did so by calculating attack rates using the estima-
tor (Equation 1) for each iteration of the Markov chain Monte Carlo 
process used to approximate the posterior distribution of the pro-
portions of feeding and non-feeding events. For each iteration of 
the Markov chain Monte Carlo process, we also quantified individual 
feeding rates on barnacles and mussels by plugging the individual 
attack rates into the multispecies Type II functional response along 
with the resource density and handling-time estimates. We then 
calculated the average feeding rate on the barnacles and mussels 
in each cage in two ways. First, we calculated the cage-specific av-
erage of the individual feeding rate calculated with the individual-
level attack-rate estimates. This corresponds to the average of the 

(1)
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.
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function across observations (f(x) in Figure  1a). Second, we calcu-
lated the cage-specific average feeding rate by plugging the aver-
age of the individual-level attack rates into the Type II functional 
response. This corresponds to the function evaluated at the average 
of the observations (f(x) in Figure 1a). The difference between these 
two estimates provided our measure for the effect of nonlinear aver-
aging on feeding rates due to individual attack-rate variation.

2.3.2 | Quantifying the potential effects of nonlinear 
averaging through handling-time variation

Handling-time variation among individuals is expected to counter-
act the effect of attack-rate variation on population-level feeding 
rates (Figure 1). We therefore wanted to quantify whether empiri-
cally plausible levels of individual handling-time variation were large 
enough to cancel or reverse the effect of the attack-rate variation 
that we estimated directly. We did so using simulations. As a base-
line for the magnitude of handling-time variation among individuals, 
we used the variation among barnacle and mussel handling times 
measured in the laboratory handling-time experiment (Appendix S2). 
The variation observed in the laboratory handling-time experiment 
provides a useful comparison because we purposefully attempted 
to maximize variation in handling times in these experiments. For 
example, although our field experiment minimized variation due to 
predator size by employing similarly sized whelks, our laboratory 
experiment used ranges of predator and prey body sizes that in-
cluded small whelks feeding on large prey (a 9-mm whelk feeding on 
a 21 mm mussel) and large whelks feeding on small prey (a 21-mm 
whelk feeding on a 1 mm barnacle). Thus, it is unlikely that variation 
in handling times among the similarly sized individuals in the caging 
experiment would exceed the handling-time variation that occurred 
in the laboratory experiment.

To perform the simulations, we first drew handling times for 
barnacles and mussels for each individual within a cage from 
log-normal distributions parameterized using the mean field 
experiment-wide handling times (the handling times used for 
hi in the attack-rate variation analysis) and the standard devia-
tions of handling times from the laboratory experiment (a mean 
of 0.49 days and a standard deviation of 0.52 days for barnacles 
and a mean of 0.77 days and a standard deviation of 1.2 days for 
mussels). We used log-normal distributions to avoid negative han-
dling times and because handling times appeared log-normally 
distributed in the laboratory handling-time experiment. We then 
calculated the feeding rate of each individual on the focal prey 
using the multispecies Type II functional response with the aver-
age attack rates and prey densities for that cage. The average of 
these feeding rates on each prey gave the average feeding rate 
including individual handling-time variation (f(x) in Figure  1b). 
We also calculated the average feeding rate on each prey using 
the average handling time among individuals (f(x) in Figure  1b). 
We then subtracted the two population-level average feeding 
rates to calculate the increase in the average feeding rate due to TA
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handling-time variation through nonlinear averaging for each prey. 
We performed 10,000 simulations for each cage. After performing 
the simulations, we compared the reductions in the average feed-
ing rates estimated due to attack-rate variation in each cage to the 
increases in average feeding rates due to handling-time variation 
across the simulations.

2.3.3 | Estimating the effects of nonlinear averaging 
at the experiment scale

Our just-described methods for quantifying the magnitude 
of nonlinear averaging were performed at the cage level and 
focused on the effect of attack-rate and handling-time vari-
ation among individuals within each cage. We also quanti-
fied the magnitude of nonlinear averaging across cages (at the 
level of the entire experiment) to understand the effect of joint 
among-individual attack-rate variation and among-cage varia-
tion in resource densities. To do so, we calculated the average 
experiment-wide feeding rate on barnacles and mussels in four 
ways. First, we calculated the average feeding rate by averaging 
across all individual feeding rates thus incorporating individual 
attack-rate variation and among-cage resource-density varia-
tion (f(ai , Rc), see Table 1 for definitions of abbreviations of the 
averages and typical empirical scenarios they describe). Second, 
we calculated the average feeding rates incorporating individual 
attack-variation but using the average resource densities among 
cages to calculate each feeding rate (f(ai , R)). Third, we calculated 
the average feeding rates incorporating among-cage variation 
in resource densities but using the average attack rates across 
individuals (f(a, Rc)). Fourth, we calculated the average feeding 
rates using the average attack rates among individuals and the 
average among-cage resource densities (f(a, R)) .  We then made 
three contrasts among the average feeding-rate estimates to 
determine the effects of nonlinear averaging at the scale of the 
entire experiment due to: (a) simultaneous variation and covaria-
tion in attack rates and resource densities (f(a, R) − f(ai , Rc)), (b) 
individual attack-rate variation alone (f(a, R) − f(ai , R)) and (c) 
among-cage resource-density variation alone (f(a, R) − f(a, Rc)). We 

generated 95% credible intervals (CrI) for the experiment-scale 
feeding rates and contrasts using the Markov chain iterations of 
the Bayesian model we used for estimating the proportions of 
individual feeding and non-feeding events.

3  | RESULTS

In total, the experiment generated 23,864 total observations for 719 
individual whelks of which 3,185 observations were feeding obser-
vations. Focusing on the 550 individuals that were observed in at 
least 30 of the 41 total surveys reduced the number of observations 
to 21,638 of which 2,918 were feeding observations. The average 
number of feeding observations per individual was 5.3 and ranged 
from 1 to 17. Of the 2,918 feeding observations, the vast majority 
were on barnacles and mussels, with only 10 feeding observations 
on the acorn barnacle Chthamalus dalli and one feeding observation 
on the limpet Lottia pelta. These observations were removed prior 
to analysis.

3.1 | Cage-level nonlinear averaging due to 
individual attack-rate variation

Across cages, individual attack-rate variation led to a reduction 
in cage-level feeding rates that ranged from 0.43 to 3.1 barnacles 
per whelk per 100 days and from 0.046 to 0.57 mussels per whelk 
per 100 days. These reductions correspond to a 3.5% to 8.7% re-
duction in barnacle feeding rates (Figure 2a) and a 2.4% to 7.9% 
reduction in mussel feeding rates (Figure 2b) relative to the case in 
which all individuals within a cage exhibited the mean cage-level 
attack rate.

3.2 | Potential cage-level nonlinear averaging due to 
individual handling-time variation

Across cages, simulated variation in individual handling times led 
to an increase in average feeding rates that ranged from 0.07 

F I G U R E  2   Among-individual attack-rate variation reduced the average feeding rates of whelks within cages on (a) barnacles and (b) 
mussels. Counts reflect the number of cages in which a given percent decrease in average feeding rate due to nonlinear averaging was 
estimated to have occurred relative to the hypothetical situation in which all individuals within a cage exhibited the same mean attack rate
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to 0.8 barnacles per whelk per 100 days and from 0.03 to 0.19 
mussels per whelk per 100 days, respectively, corresponding to 
0.6% to 2.5% and 0.6% to 2.3% increases in mean feeding rates 
(Figure  3). None of the increases in average feeding rates due 
to handling-time variation exceeded the magnitude by which 
average feeding rates were reduced by attack-rate variation 
(Figure 3).

3.3 | Experiment-level nonlinear averaging due to 
attack-rate and resource-density variation

The effect of nonlinear averaging at the experiment scale, includ-
ing both among-individual attack-rate variation and among-cage 
resource-density variation, was greater than the effect of nonlinear 
averaging through within-cage attack-rate variation for both barna-
cles and mussels (Figure 4). The difference between the experiment-
scale feeding rates including among-individual attack-rate variation 

and among-cage resource-density variation versus the feeding rate 
calculated using the average attack rates and resource densities 
(f(a, R) − f(ai , Rc)) was 6.1 barnacles per whelk per 100  days and 
1.9 mussels per whelk per 100  days, corresponding to a 22% and 
29% reduction in feeding rates (Figure  4b,d). The difference be-
tween the experiment-scale feeding rates calculated with among-
individual attack-rate variation and average among-cage resource 
densities versus the feeding rates calculated using the average 
attack rates and resource densities (f(a, R) − f(ai , R)) was 3.15 
barnacles per whelk per 100  days and 0.8 mussels per whelk per 
100 days, corresponding to 11% and 12% reduction in feeding rates 
(Figure 4b,d). The difference between the experiment-scale feeding 
rates calculated with among-cage resource-density variation but 
using the average among-individual attack rate versus the feeding 
rates calculated using the average attack rates and resource densi-
ties (f(a, R) − f(a, Rc)) was 0.8 barnacles per whelk per 100 days and 
0.26 mussels per whelk per 100 days, corresponding to 3% and 4% 
reductions in feeding rates (Figure 4b,d).

F I G U R E  3   Simulations based on 
the combination of information from 
field and laboratory experiments show 
that individual handling-time variation 
increases the average feeding rates of 
whelks on both barnacles and mussels in 
each cage. However, these increases do 
not outweigh the decreases in average 
feeding rates due to attack-rate variation. 
Therefore, in all cages, the net effect of 
individual variation in both attack rates 
and handling times is a reduction in mean 
feeding rates
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4  | DISCUSSION

Because trait variation among individuals is common and species 
interactions are often nonlinear functions of species' traits, it has 
been supposed that nonlinear averaging ‘might be of ubiquitous 
importance in ecology’ (Bolnick et al., 2011, p. 185). Although the 
conditions for nonlinear averaging to influence species interactions 
may be ubiquitous, whether these effects are strong enough to 
have ecologically significant consequences, and what determines 
their strength, remains rarely tested. We directly estimated how 
nonlinear averaging and intraspecific attack-rate variation affected 
the strength of whelk interactions with their barnacle and mussel 
prey. We estimated that intraspecific attack-rate variation reduced 
whelk feeding rates within cages by up to 9% relative to the hy-
pothetical case in which all whelks were equivalent and exhibited 

the same mean attack rate. Simulations showed that an increase in 
mean whelk feeding rates due to individual handling-time variation 
was unlikely to outweigh the decrease due to individual attack-rate 
variation. We also showed that, at the experiment scale, the effect 
of nonlinear averaging due to both variation among individuals in 
attack rates and variation among cages in resource densities was 
larger than that at the cage level (22% reduction in feeding rates for 
barnacles and 27% for mussels). Furthermore, the effect of nonlin-
ear averaging at the experiment scale was greater than the sum of 
the effects of individual attack-rate variation and resource-density 
variation alone, indicating that the effects of these two sources of 
variation are not additive. These results provide the first estimates 
of nonlinear-averaging effects on feeding rates due to intraspe-
cific variation in the field and illustrate the complex interactions 
among variation, covariation and nonlinearities that determine the 

F I G U R E  4   Across the experiment, among-individual variation in attack rates and among-cage variation in barnacle and mussel densities 
led to a difference in the average feeding rate across individual whelks (the solid horizontal lines in (a) and (c)) and the feeding rate calculated 
using the among-individual average attack rate and the among-cage average resource densities (the dashed horizontal lines in (a) and (c)). 
The vertical line in (a) and (c) represents the average attack rate across cages, and the curved solid black line represents the relationship 
between attack rates and feeding rates that would be expected at the among-cage average resource densities. The coloured lines in (a) and 
(c) represent the relationships between attack rates and feeding rates for each cage. The posterior distributions of average feeding-rate 
estimates at the experiment scale were lowest for rates that were estimated including individual variation in attack rates and among-cage 
variation in resource densities (f(ai , Rc)), were intermediate for rates estimated including attack-rate variation but using the average resource 
densities (f(a, Rc)) as well as when using the average among-individual attack rate but including among-cage resource densities (f(ai , R)) and 
were highest for rates estimated using the average among-individual attack rates and average among-cage resource densities (f(a, R)). The 
black lines in (b) and (d) represent the means of the posterior distributions
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overall net effects of nonlinear averaging on the strength of species 
interactions.

Prior to our analysis, we had several reasons to expect that attack-
rate variation among whelks would cause a large effect of nonlinear 
averaging. First, other whelk species have been shown to exhibit in-
dividual diet specialization unexplained by attributes such as body 
size, which should be reflected by large individual variation in attack 
rates (Burrows & Hughes, 1990; West, 1986, 1988). Second, whelks 
generally exhibit strongly nonlinear functional responses in manipu-
lative cage and laboratory experiments (Katz, 1985; Murdoch, 1969; 
Novak et  al.,  2017). However, our data showed no signature of 
strong individual diet specialization among whelks in their attack 
rates. Furthermore, the relationships between whelk attack and 
feeding rates were only weakly nonlinear (Figure  4a,c). This weak 
nonlinearity is the product of the magnitude of the whelks' attack 
rates and handling times and the prey densities they experienced. 
We limited whelk size variation to examine the residual effects of 
individual diet specialization and stochasticity to provide a baseline 
estimate of the magnitude of nonlinear-averaging effects on preda-
tor feeding rates in the absence of size variation, the consequences 
of which are now well-characterized (Rall et al., 2012; Uiterwaal & 
DeLong, 2020; Vucic-Pestic et al., 2010). This will have reduced the 
amount of attack-rate variation among individuals. However, we 
note that even with increased attack-rate variation due to the in-
clusion of size variation, the effects of nonlinear averaging may not 
have increased substantially due to the weakly nonlinear relation-
ships between attack and feeding rates (Figure 4a,c). In general, we 
therefore conclude that expectations on the strength of nonlinear-
averaging effects must consider both how much trait variation is 
likely among individuals, and how nonlinear relationships between 
traits and interaction strengths are likely to be under conditions 
organisms experience in the field (see also Beardsell et  al.,  2021; 
Novak, 2010; Preston et al., 2018; Wootton & Emmerson, 2005).

Even though the effects of nonlinear averaging were not as 
large as expected, the effects were detectable even with variation 
in predator size was minimized. We also note that the variation in 
whelk size that did exist did not account for any variation in diet 
proportions (Figure S3.1 in Appendix  S3). Of course, whether the 
magnitudes of the effects should be considered to be weak or strong 
are likely to depend on perspective; a 9% change in an estimate of 
prey mortality due to predation could be viewed as large or small de-
pending on the natural history of the species involved (e.g. whether 
predation is a large or small source of total mortality for the prey, 
and how large a change in mortality it represents relative to prey 
growth rates (Novak & Wootton,  2010)). However, weak effects 
of intraspecific variation through nonlinear averaging are consis-
tent with several recent studies in which nonlinear averaging was 
a potential mechanism producing the effects of intraspecific vari-
ation (Dibble & Rudolf,  2019; Start,  2019; Start & Gilbert,  2019). 
For example, Start and Gilbert (2019) used mesocosm experiments 
to examine the effects of individual activity-rate variation in drag-
onfly larvae on community and ecosystem properties. They found 
that differences among treatments in mean activity rate had large 

effects, whereas differences in the magnitude of intraspecific vari-
ation in activity rates had relatively minor effects. The weak effects 
of intraspecific variation in their experiment align with our estimates 
of nonlinear-averaging effects on whelk feeding rates. Nonetheless, 
more measurements of nonlinear-averaging effects are necessary 
before generalizing about their importance.

Our simulations suggest that increases in whelk feeding rates 
through individual handling time are unlikely to be greater than the 
decreases due to attack-rate variation. Although we assumed in 
our simulations that individual variation in handling times on bar-
nacles and mussels among the whelks was equivalent to that ob-
served in the laboratory handling-time experiment, these variances 
are quite large relative to what would be expected for similarly sized 
whelks feeding on similarly sized prey (standard deviations of 0.52 
and 1.2  days for barnacles and mussels respectively). The weaker 
effects of nonlinear averaging through individual handling-time 
variation can again be explained by the weak nonlinearity of the re-
lationship between handling times and feeding rates at the attack 
rates, handling times and resource densities occurring in the sys-
tem (Figure  5). In systems with low attack rates such as our focal 
study system, the effects of handling-time variation are likely to be 
weak unless prey densities are quite large. This is because attack 
rates determine the slope of functional responses near the origin, 
whereas handling times determine the asymptote of functional re-
sponses at high prey densities (Holling, 1959). Thus, with low attack 
rates, prey densities must be quite large before the relationship be-
tween handling times and feeding rates becomes nonlinear enough 
for handling-time variation to have strong effects. In other systems 
where predators exhibit higher attack rates and/or resources exhibit 
higher densities, handling-time variation is likely to play a larger role 
in shaping population-level feeding rates through nonlinear averag-
ing. In these cases, individual handling-time variation may outweigh 
the effects of individual attack-rate variation to cause net increases 
in population-level feeding rates.

Our inferences of feeding rates calculated at the experiment level 
illustrate how the effects of intraspecific variation through nonlinear 
averaging can be scale dependent when there is covariance between 
intraspecific variation and other sources of variation influencing 
species interactions. The effects of nonlinear averaging on feeding 
rates were greater when considering both individual variation in at-
tack rates and among-cage variation in resource densities. This was 
true for both barnacles and mussels. Furthermore, the joint effects 
of variation among individuals in attack rates and variation among 
cages in resource densities were greater than the sum of the effects 
of each source of variation alone. This may have been the result of 
negative covariance between prey densities and attack rates despite 
increases in mean predator feeding rates with increases in focal prey 
abundances (Figure S3.2, S3.3 in Appendix S3). We suggest that a 
fruitful way for future work to integrate variation among individuals, 
variation in the environment and the covariation among them into 
ecological theory is scale transition theory (Chesson, 1998a, 1998b, 
2012). Scale transition theory was developed to account for the ef-
fects of nonlinear averaging on regional-scale population dynamics 
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due to local-scale nonlinear population dynamics and spatial varia-
tion. As scale transition theory already provides a way of incorporat-
ing spatial variation into models of population dynamics, modifying 
scale transition theory to include variances and covariances be-
tween sources of intraspecific variation and environmental variation 
will provide a way to explicitly incorporate the effects of nonlinear 
averaging through intraspecific variation. The explicit derivations of 
the effects of variation and covariation on nonlinear averaging will 
help to identify the circumstances under which some sources of vari-
ation are likely to counteract variation in others and when certain 
sources of variation may be particularly important.

Although we aimed to directly examine how nonlinear averaging 
influences population-level feeding rates, our approach still required 
that we use averages for some parameters which will have influenced 
our estimates of variation. More specifically, to estimate individual at-
tack rates, we required a measure of prey densities associated with 
the feeding surveys. Because estimating attack rates at the individual 
level required longitudinal surveys, we used average prey densities 
over the course of the experiment as our measure of prey densities. 
Doing so will have influenced our individual attack-rate estimates by 
not accounting for the temporal variation in prey densities as well as 
the nonlinear relationship between prey densities and the attack-rate 
estimator. It was nonetheless necessary to implement our approach. 
Given that whelk functional responses were only weakly nonlinear 
and the within-cage variation in prey densities that occurred, we do 
not believe this will have greatly influenced our overall inferences. 
However, recognition of these limitations does highlight that the 
sources of nonlinear averaging that are accounted for can often be 

subjective and constrained by the goals and methods of a study. 
Furthermore, the existence of logistical constraints on which sources 
of variation can even be considered by a study highlights the impor-
tance of developing a priori expectations of what sources of variation 
are likely to have large effects through nonlinear averaging and under 
what circumstances ignoring them will matter.

5  | CONCLUSIONS

Theory predicts that trait variation among individuals could have 
widespread ecological and evolutionary effects by altering spe-
cies interaction strengths through nonlinear averaging (Bolnick 
et  al.,  2011; Gibert & Brassil,  2014; Okuyama,  2008). Although 
the necessary components for nonlinear averaging to affect 
species interactions may be common, our data highlight that, in 
practice, the strength of these effects is dependent on how non-
linear the functions that link species' traits to their interactions 
are and how variable individuals are in their traits. Determining 
whether any generalizations can be made about the strength of 
nonlinear-averaging effects will require further concurrent esti-
mates of nonlinear interactions and intraspecific variation in the 
field. Nevertheless, that we were able to estimate the detectable 
effects of intraspecific variation on predator feeding rates through 
nonlinear averaging encourages an explicit incorporation of varia-
tion into theoretical models, as well as empirical work to uncover 
the processes generating variation, nonlinearities and the statisti-
cal interactions among them.

F I G U R E  5   The relationships between feeding rates and prey densities (a, d), attack rates (b, e) and handling times (c, f) illustrate the 
weak nonlinearity observed between them. Each of the panels uses the experiment-wide averages for all of the parameters excepting the 
parameter being varied on the x-axis. The vertical grey line in each panel represents the experiment-wide mean of the parameter on the 
x-axis
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