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Abstract. Intraspecific variation in ecologically relevant traits is widespread. In generalist
predators in particular, individual diet specialization is likely to have important consequences
for food webs. Understanding individual diet specialization empirically requires the ability to
quantify individual diet preferences accurately. Here we compare the currently used frequentist
maximum likelihood approach, which infers individual preferences using the observed prey
proportions to Bayesian hierarchical models that instead estimate these proportions. Using
simulated and empirical data, we find that the approach of using observed prey proportions
consistently overestimates diet specialization relative to the Bayesian hierarchical approach
when the number of prey observations per individual is low or the number of prey observations
vary among individuals, two common features of empirical data. Furthermore, the Bayesian
hierarchical approach permits the estimation of point estimates for both prey proportions and
their variability within and among levels of organization (i.e., individuals, experimental treat-
ments, populations), while also characterizing the uncertainty of these estimates in ways inac-
cessible to frequentist methods. The Bayesian hierarchical approach provides a useful
framework for improving the quantification and understanding of intraspecific variation in
diet specialization studies.

Key words: American alligator; categorical data; diet analysis; Dirichlet model; intertidal whelks;
predator–prey interactions.

INTRODUCTION

Individuals within populations often differ from one
another in ways that influence their function in ecologi-
cal systems (Bolnick et al. 2011, Violle et al. 2012). One
manifestation of this intraspecific variation that is
expected to have important community- and popula-
tion-level consequences is individual diet specialization
(Bolnick et al. 2003, 2011, Ara�ujo et al. 2011). Theory
suggests that individual diet specialization can alter
mean interaction strengths between predators and prey,
change the perceived topology and consequent dynamics
of ecological networks, and drive eco-evolutionary feed-
backs when prey preferences are heritable (Bolnick et al.
2011, Schreiber et al. 2011, Gibert and Brassil 2014).
Since the seminal paper on measuring diet specialization
by Bolnick et al. (2002), empirical studies have further
provided insight into the role of competition (e.g.,
Bolnick et al. 2007, Sv€anback and Bolnick 2007)
and ecological opportunity (e.g., Semmens et al. 2009,
Rosenblatt et al. 2015) in promoting diet specialization,
and its structure within populations (e.g., Ara�ujo et al.
2008, Tinker et al. 2012). The ability to quantify the
prey preferences of individual predators accurately is a

critical prerequisite for testing and developing such the-
ory and empirical insights.
Individual diet specialization has been quantified by

comparing each individual’s diet preferences to either
the preferences of each other individual or to the overall
preferences of the aggregate population. Under the
assumption that all sampled individuals had equal
opportunity to feed on the population’s potential prey
and exhibit equal handling times, the observed propor-
tions of prey items in an individuals diet have often been
equated directly to prey preference. For example, among
the most commonly used indices for quantifying a given
individual’s diet specialization is the proportional simi-
larity index, PSi ¼ 1� 0:5

P
j jpij � vj j, where pij is the

observed proportion of prey j in the diet of individual i,
and vj is the average observed proportion of prey j
among individuals in the population (Schoener 1968,
Feinsinger et al. 1981). PSi varies from a value of vj if
the individual is a specialist on prey j to a value of 1 if
the individual’s diet proportions are the same as its
population’s. Similarly, the Individual Specialization
(IS) and E indices have been commonly used to quantify
diet specialization among individuals in a population or
some other grouping such as location, sex, or experimen-
tal treatment (Appendix S1). IS is calculated by averag-
ing over the PSi values for individuals within the
population (Bolnick et al. 2002). The E index is calcu-
lated by averaging across all individual-to-individual
pairwise proportional similarities (Ara�ujo et al. 2008).
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Using observed diet proportions as estimators of true
diet proportions can be viewed as a maximum likelihood
estimate at the individual level. Hereafter, we refer to this
as the observed proportions method. Although such max-
imum likelihood estimates are asymptotically unbiased,
they can be severely biased for small sample sizes (Bolker
2008). Small sample sizes (the number of prey items per
predator individual) are a common feature of predator
diet data to which inferences of diet specialization can be
particularly sensitive, either because indices rely on the
comparison of diet proportions that are observed with
error (e.g., individual-to-individual comparisons), or
because they rely on the comparison of diet proportions
associated with vastly different sample sizes (individual-
to-population comparisons). Because the direct use of the
observed diet proportions has formed the basis of all pre-
vious diet specialization indices, including the commonly
used Within Individual Component divided by Total
Niche Width (WIC/TNW) index (Appendix S2) and also
those seeking to account for incomplete sampling (Novak
and Tinker 2015), methods to assess and address this
sensitivity are needed.
Here we compare the use of the observed proportions

approach to the use of Bayesian hierarchical models for
quantifying diet specialization. Bayesian methods are
increasingly used in ecology (Ellison 2004, Clark 2005)
and have been key to the development of methods for
quantifying predator-prey interactions at the species level
(e.g., Moore and Semmens 2008, Wolf et al. 2015). When
formulated hierarchically (Fordyce et al. 2011), Bayesian
models can avoid the aforementioned limitations of the
observed proportions approach by providing estimates
for each individual that are increasingly pulled towards
the population’s (group’s) mean value the lower an indi-
vidual’s sample size (Gelman et al. 2013). In the context
of quantifying diet specialization, this gives lower weight
to the diet proportions of individuals having fewer prey
observations, potentially reducing the bias of low sample
sizes expected for the observed proportions approach. In
addition, the Bayesian hierarchical approach permits
the variability of diet proportion point estimates to be
quantified, both within and among groups, while also
characterizing the uncertainty of these estimates in ways
inaccessible to currently implemented frequentist meth-
ods. Using simulated data where the true diet proportions
are known, we examine the accuracy of diet specialization
inferences across varying numbers of prey observations
per individual, and in populations with heterogeneity in
the number of prey observations among individuals. We
also examine the correspondence of common indices of
diet specialization in the context of the Bayesian frame-
work. Lastly, we reanalyze two published empirical data
sets of individual diets to highlight the differences in
inferences that the observed proportions and Bayesian
hierarchical approaches provide. The data, R code, and
technical details for repeating all simulations and empiri-
cal analyses are provided in the Supplementary Material.

MATERIALS AND METHODS

We first describe our use of Bayesian hierarchical
models in a generic sense before describing the details of
our simulations and empirical analyses.
A two-level Bayesian hierarchical model for the diet of

a sampled population of individuals may be written as

y~i �Multinomialðp~i; niÞ (1)

p~i �Dirichletðq~� wÞ (2)

(Fordyce et al. 2011), where y~i is a vector containing the
number of each prey type observed in the diet of the ith
predator individual, ni is the total number of prey items
observed for the individual, p~i is a vector of the individ-
ual’s diet proportions (to be estimated), q~ is a vector of
the population’s diet proportions (to be estimated), and
w is the so-called concentration parameter (to be esti-
mated) of the Dirichlet distribution that characterizes
the clustering of the individual diets around the popula-
tion’s mean diet proportions (Fig. 1). The concentration
parameter thereby reflects the degree of diet specializa-
tion that exists within the population. When no previous
knowledge exists on the q~ and w parameters, uniform
priors, such as

q~�Dirichletð1~Þ (3)

w�Uniformð0; cÞ (4)

may be used. Here 1~ is a vector of ones the same length
as the total number of prey types observed for the popu-
lation (Laplace’s prior; a uniform Dirichlet distribution)
and c is the maximum value that the concentration
parameter w may be presumed to achieve.
For our empirical reanalyses we expanded upon this

model to include more grouping levels by including
additional equations like Eqs. 2–4 with group-specific
parameters. We denote these group-specific parameters
with subscripts. For example, the concentration parame-
ter describing the clustering of sites within an aggregate
population is denoted as wsites, but that of individuals
within sites (i.e., individual specialization per se) simply
as w.

Diet specialization at the individual level

We used data simulated under several scenarios to
compare the congruence of the observed proportions and
Bayesian hierarchical methods in quantifying the diet
specialization of individuals using the proportional simi-
larity index, PSi. First, we simulated multinomial data for
500 populations consisting of 100 individuals that were
each observed feeding on either 5, 10, 25, or 50 prey items
of up to four different prey types. Second, because in
studies of individual predator diets the number of prey
items observed per individual varies considerably among

1536 KYLE E. COBLENTZ ET AL. Ecology, Vol. 98, No. 6



individuals, we also simulated multinomial data for 500
populations in which 100 different predator individuals
per population were observed feeding on a range of prey
item counts. The number of observations per individual
was stochastically drawn from a beta distribution repre-
senting one of three possible scenarios: a uniform distri-
bution of observations per individual, Beta(a ¼ 1,
b ¼ 1); a skewed distribution of observations per individ-
ual whereby most individuals were observed with few
prey items, Beta(0.5,1); or a skewed distribution of obser-
vations per individual whereby most individuals were

observed with a large number of prey items, Beta(1,0.5).
Draws from the beta distribution were multiplied by 100
and rounded to the next highest integer, leading to a total
range of 1–101 prey items per individual (see Appendix S2
for details, and Data S1, S2 for R code to replicate the
simulations).
For each simulation, we implemented the Bayesian

hierarchical model (Eqs. 1–4) in OpenBUGS through the
R package R2OpenBugs (Lunn et al. 2000, Sturtz et al.
2005), implemented the observed proportions method
using the R package RInSp (Zaccarelli et al. 2013), and

FIG. 1. Hypothetical data illustrate the hierarchical nature of the Bayesian models and the properties of the Dirichlet distribu-
tion. In panel A, the black points represent the mean diet proportions of population sub-groups (e.g., sites or treatments) and the
gray point denotes the population mean over all sub-groups. The labeled points in panel A represent the mean diet proportions of
the sub-groups illustrated in panels B–D. In panels B–D, the black points represent the estimated diet proportions of the individuals
within the sub-group, whereas the gray point represents the mean diet of the sub-group. All data were generated from Dirichlet dis-
tributions. Each Dirichlet distribution has a vector describing the mean diet proportions of the population or sub-group (the gray
points in panels A–D) and a concentration parameter w that describes the extent to which sub-groups (A) or individuals (B–D) are
clustered around the population mean (A) or sub-group mean (B–D). A w value of 1 (lnðwÞ ¼ 0) represents a uniform distribution
around the mean (as illustrated in panel A); values >1 (lnðwÞ[ 0) represent a more concentrated distribution (as illustrated in pan-
els B and D); values <1 (lnðwÞ\0) represent a more dispersed distribution (as illustrated in panel C).
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compared these to the true PSi values of all individuals
(Data S1, S2). For the Bayesian analysis, we used the
mean of the posterior distribution of PSi as our estimate
of PSi. To quantify differences between the estimates and
the true values of PSi, we calculated the percentage of
points falling below the 1:1 line of perfect correspon-
dence (the percentage of negative residuals). A method
that equally under- and overestimates PSi values is
expected to have 50% negative residuals. We therefore
interpret the percentages of negative residuals for PSi
>50% as a measure of a given method’s tendency to over-
estimate diet specialization.

Diet specialization at the population level

Although estimates of diet specialization at the indi-
vidual level are useful for investigating the relationship
between diet specialization and any number of potential
continuous traits (e.g., fitness, body size, body shape),
researchers have typically been interested in contrasting
the relative diet specialization of individuals belonging
to different categories, such as experimental treatments,
study sites, or sexes. Therefore, we simulated data to
compare the two most commonly used indices for esti-
mating relative diet specialization at the population
level, IS and WIC/TNW, using the observed proportions
method, and the concentration parameter of the Dirich-
let distribution (w), which is unique to the Bayesian hier-
archical approach. To simplify interpretation, we used
the natural log of w, lnðwÞ (Fig. 1), to reflect the degree
of diet specialization. A positive value of lnðwÞ reflects a
population of individuals whose diet proportions are
concentrated around the mean diet proportion of the
population, a value of 0 reflects a population of individ-
uals whose diet proportions are uniformly distributed
around the population’s mean diet, and a negative value
reflects a population of individuals whose diets are dis-
persed away from the population’s mean diet. Therefore,
lnðwÞ measures a gradient in diet specialization from
weak specialization with increasingly large positive val-
ues to strong specialization at negative values.
To compare methods, we used Eqs. 1 and 2 to simulate

multinomial data for 1,000 populations of 100 individu-
als, each feeding on up to four prey types with the count
of observed prey items per individual drawn from a uni-
form distribution that ranged from 3 to 50 items, reflec-
tive of a typical empirical range for gut content data (for
details, see Appendix S2). For each population, we then
implemented the Bayesian hierarchical model (Eqs. 1–4),
implemented the observed proportions method using
RInSp (Data S3), and contrasted the estimates of IS,
WIC/TNW, and the concentration parameter ln(w) by
graphing the indices against one another. We also exam-
ined the accuracy with which the Bayesian method was
able to estimate true ln(w) values, and the accuracy with
which the observed proportions method was able to esti-
mate IS and WIC/TNW, by calculating R2 values and
evaluating the average difference from the true values.

Analysis of empirical data

Simulations are limited in that they reflect only certain
aspects of real data. We therefore also reanalyzed two
empirical data sets that represent contrasting data-
collection methods and predator types: (1) gut contents
from American alligators, Alligator mississippiensis, con-
taining multiple prey items per gut collected in a one-
time snapshot fashion (Fig. 1A; Rosenblatt et al. 2015),
and (2) repeated longitudinal observations of intertidal
whelks, Vasula (= Thais) melones, that feed on only one
prey item at a time (Fig. 1B; West 1988).

Alligator data.—These data represent 1,452 American
alligators (combined female and male) across 19 sites in
the southeastern United States. We grouped the 11–38
families of prey species observed in the diets at each site
into nine functional groups: fish, molluscs, crustaceans,
aquatic insects, terrestrial insects, amphibians, reptiles,
birds, and mammals. Plant material was removed prior
to analysis. This reduced the sparseness of the data and
reduced the degree to which species-specific variation in
prey community composition inflated inferences of
between site variation in diet specialization.
We fit three Bayesian hierarchical models to these

data: (1) a two-level model with all individuals grouped
into a single population (Eqs. 1–4), (2) a three-level
model with individuals nested within site, and (3) a four-
level model with individuals nested within sex nested
within site (see Appendix S3 for details). We fit the three
competing models in JAGS using the R package rjags
(Plummer 2003, 2016) and calculated the Widely Appli-
cable Information Criterion (also known as the Watan-
abe-Akaike Information Criterion; WAIC) using the
R package loo to select among them (Watanabe 2010,
Gelman et al. 2014, Vehtari et al. 2016). WAIC is an
information criterion that, like other information crite-
ria, provides a measure of model fit that is penalized by
the number of model parameters, but has a sound theo-
retical foundation in Bayesian statistics (Watanabe 2010,
Gelman et al. 2014). We considered models whose
WAIC scores were within 1 standard error (SE) of one
another to be indistinguishable on the basis of WAIC. In
cases where this occurred among the set of top models
we chose to analyze the simplest model on the basis of
parsimony. To permit the comparison of PSi, IS, and
WIC/TNW estimates, we applied the observed propor-
tions method to the data using RInSp after splitting the
data to the lowest level of the selected Bayesian hierar-
chical model. The code and data used in the analysis can
be found in Data S4 and S5.

Whelk data.—These longitudinal data represent 95
whelks from two rocky intertidal sites on the Pacific
Coast of Panama (West 1988). Individually tagged and
measured whelks were observed every 12 hours over a
period of 3 months and, in total, were observed feeding
on 19 species of gastropods, bivalves, and polychaetes.
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Species were not pooled into functional groups for the
analysis of the whelk data. West reported data for indi-
viduals with at least five prey observations per individual
and categorized the whelks into three size classes.
We fit three Bayesian hierarchical models to these

data: (1) a two-level model with all individuals grouped
into a single population (Eqs. 1–4), (2) a three-level
model with individuals categorized by size class, and (3)
a four-level model with individuals categorized by size
class nested within site (see Appendix S3 for details). As
for the alligator data, we used WAIC to compare the
competing models. The observed proportions method
was again applied to the data using RInSp after splitting
them to the lowest level of the selected Bayesian hierar-
chical model. The code and data used for the analysis
can be found in Data S6 and S7.

RESULTS

Diet specialization at the individual level

The Bayesian hierarchical model for estimating special-
ization at the level of each individual outperformed the
observed proportions method both when the number of
prey items per individual was low (Fig. 2) and when the
number of prey items per individual varied among indi-
viduals (Fig. 3). With <50 observations per individual,
the observed proportions method on average overesti-
mated levels of specialization by underestimating the true
values of PSi (Fig. 2; 77% negative residuals when n ¼ 5;
69% when n ¼ 10; 62% when n ¼ 25; 57% when n ¼ 50).

In contrast, the Bayesian hierarchical method estimated
PSi reliably regardless of sample size (Fig. 2; 45% nega-
tive residuals when n ¼ 5; 48% when n ¼ 10; 50% when
n ¼ 25; 50% when n ¼ 50). The observed proportions
method also performed poorly when sample sizes varied
among individuals (Fig. 3), tending to overestimate spe-
cialization most when most individuals had few observa-
tions (66% negative residuals). The observed proportions
method estimated PSi more accurately when observations
were uniformly distributed among individuals and when
most individuals had many observations, but still overes-
timated specialization in these cases (60% and 57% nega-
tive residuals, respectively). In contrast, the Bayesian
hierarchical method was not influenced by the variation
in the number of observations per individuals, consis-
tently exhibiting an equal number of over- and under-esti-
mates for all scenarios (i.e., 49–50% negative residuals).

Diet specialization at the population level

The IS, WIC/TNW, and lnðwÞ indices of population-
level specialization were all positively correlated with one
another (Fig. 4), but the relationships between IS and
either WIC/TNWor lnðwÞ were weaker than the relation-
ship between lnðwÞ and WIC/TNW (IS and WIC/TNW,
R2 = 0.59; IS and lnðwÞ, R2 = 0.72; WIC/TNW and
lnðwÞ, R2 = 0.93). The latter relationship was weakly
nonlinear, with WIC/TNW beginning to saturate as lnðwÞ
increased. IS tended to imply greater diet specialization
than did WIC/TNW and lnðwÞ. The Bayesian hierarchi-
cal model estimated the true values of lnðwÞ accurately

FIG. 2. The observed proportions method led to the overestimation of individual diet specialization (the underestimation of
proportional similarity index, PSi) at low numbers of observations per individual. As the number of observations per individual
increases, the estimates from the observed proportions method and the Bayesian hierarchical models converge and perform equally
well at estimating PSi. Estimates of PSi from simulated data are plotted against the true PSi values for 5, 10, 25, and 50 observations
per individual. The gray line in each graph reflects the line of equality between the true and estimated values.
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despite the heterogeneous distribution of sample sizes we
simulated (Fig. 4, R2 ¼ 0:97). The observed proportions
method estimated IS and WIC/TNW precisely, but con-
sistently underestimated both indices by average values of
0.04 and 0.03, respectively (Fig. 4).

Analysis of empirical data

Alligator data.—The comparison of the three Bayesian
hierarchical models indicated that the three-level model
that included site as a grouping variable and the four-
level model that included both site and sex as grouping
variables were indistinguishable by WAIC (Table 1,
Appendix S3). We therefore analyzed the simpler three-
level model which suggested that sites differed in their
average diet proportions (Fig. 6A, lnðwsitesÞ ¼ 1:13 (95%
credible interval 0.83–1.43)). While the majority of sites
showed evidence of diet specialization at the individual
level, sites also varied substantially in their lnðwÞ values
indicating that diet specialization was stronger within
some populations than others (Fig. 5B, Fig. 6B–D).
Estimates of lnðwÞ showed weak but positive correla-
tions with the observed proportions method estimates of
IS (R2 ¼ 0:30, Fig. 5B) and WIC/TNW (R2 ¼ 0:47,
Fig. 5C). Estimates of PSi from the Bayesian

hierarchical model and those of the comparable
observed proportions method evidenced little correspon-
dence, with the observed proportions method suggesting
substantially higher levels of diet specialization than the
Bayesian hierarchical method for many individuals
(Fig. 5A). Estimates of diet proportions at the site and
individual level suggested that differences among sites
were primarily attributable to differences in the diet con-
tributions of invertebrates (especially molluscs) and
fishes, with one site showing a large diet proportion of
reptiles. The prey taxa responsible for within-site varia-
tion in diet proportions varied between sites.

Whelk data.—The three Bayesian hierarchical models
considered were indistinguishable from one another
using WAIC, so we selected the simplest two-level model
that implied no difference among size classes and sites in
whelk diet proportions (Table 1, Appendix S3). The PSi
estimates from this model and the observed proportions
method were strongly positively correlated (R2 ¼ 0:93;
Fig. 5E). However, the observed proportions method
consistently implied greater specialization. The model
suggested dispersion among individual diet proportions
(lnðwÞ ¼ 0:99, 95% CrI = (0.67–1.29), Fig. 6E) that was
driven primarily by differences in individual’s apparent

A B C

D E F

FIG. 3. Simulations with varying numbers of prey per predator individual following one of three distributions, (A, D) a uniform
distribution, (B, E) a distribution with most individuals having a large number of observations, or (C, F) a distribution with most
individuals having few observations, showed that the observed proportions method overestimates specialization when the number
of prey per individual varied across individuals. In contrast, the Bayesian hierarchical models estimated prey proportions more
accurately in all situations. The gray line in each graph is the line of equality between the true and estimated PSi values.

1540 KYLE E. COBLENTZ ET AL. Ecology, Vol. 98, No. 6



preference for either Ostrea spp. oysters, Siphonaria
maura limpets, or serpulid polychaetes.

DISCUSSION

A prerequisite for gaining insights into the causes and
consequences of diet specialization is the ability to accu-
rately quantify specialization (Bolnick et al. 2003, 2011,
Ara�ujo et al. 2011). Here, using simulated and empirical
data, we show that Bayesian hierarchical models are less

prone to the overestimation of diet specialization than
the currently used frequentist observed proportions
approach, especially when the numbers of prey observed
per individual are low or are heterogeneous among indi-
viduals. Low sample sizes per individual and heterogene-
ity in sample sizes are two common features of predator
diets whose influences were also observed in our
reanalyses of two empirical data sets. Furthermore, our
analysis of the empirical data sets highlights the flexibil-
ity of hierarchical methods and illustrates the ability of

FIG. 4. (A) Estimates of relative diet specialization within groups from simulated data showed that the Bayesian hierarchical
models provide a faithful estimate of the true value of the Dirichlet concentration parameter, w. (B, C) Simulations also showed that
the observed proportions method provides precise estimates that consistently underestimate the true values of IS and WIC/TNW.
The gray line reflects the line of equality between the true and estimated values. (D–F) The three measures of population-level diet
specialization within groups, lnðwÞ, IS, and WIC/TNW, were all positively correlated, but lnðwÞ and WIC/TNW show a higher cor-
relation than does either with IS.
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the method to provide quantitative descriptions of diets
and diet specialization for individuals and groups under
a single framework.
At the individual level, the observed proportions

method consistently estimated higher diet specialization
than the underlying true values in the simulated data,
whereas the Bayesian method appeared unbiased. The
observed proportions method also estimated greater diet
specialization for individuals within the empirical data
sets, suggesting that the observed proportions method
may lead to biased inferences of diet specialization in these
cases. Our simulations showed that overestimation by the
observed proportions method is particularly severe when
sample sizes per individual are low or variable across indi-
viduals. Indices that compare individuals to individuals
(e.g., the E index [Ara�ujo et al. 2008]) exacerbate this over-
estimation of diet specialization (Appendix S1).
Hierarchical models provide so-called shrinkage esti-

mators for which estimates are pulled towards popula-
tion-level means. The degree to which shrinkage occurs is
dependent on the sample size or amount of information
that estimates are based upon (Gelman et al. 2013). The
Bayesian hierarchical method thereby gives less weight to
observations with low sample sizes whereas the observed
proportions method gives all observations equal weight
regardless of sample size. For instance, when an individ-
ual is observed feeding on three prey items of the same
prey type, the observed proportions method will infer this
individual to be a complete specialist. In contrast, the
Bayesian hierarchical method will associate some non-
zero probability to each of the unobserved but potential
alternative prey depending on the assumed prior and the
population-level diet proportion estimates. At high

sample sizes the observed proportions and Bayesian hier-
archical models will converge. In our simulations, this
occurred when individuals were observed feeding on
between 25 to 50 prey items, which exceeds the median
individual sample sizes in both empirical data sets we
analyzed. Although we did not consider the influence of
the number of prey types fed on across individuals, this is
unlikely to influence the estimation of diet proportions in
a fundamentally different manner than assessed here
given sufficient sample sizes.
In our reanalyses of the two empirical data sets, both

individual- and population-level estimates of the observed
proportions method exhibited a much higher correspon-
dence with those of the Bayesian hierarchical method for
the whelks than for the alligators. Both data sets exhibited
heterogeneity in sample sizes, with the majority of indi-
viduals having low sample sizes and few individuals hav-
ing large sample sizes (Appendix S4: Figures S1 and S2).
However, the range of sample sizes was vastly different in
the two data sets, with the whelks having been observed
consuming between 4 and 18 prey items per individual
and the alligators having been observed with between 1
and 2335 items in each individual’s gut. Several popula-
tions of alligators also had individuals with low sample
sizes who had fed on rarely observed prey types. The com-
bination of these patterns means that the alligator diets
were much more heterogeneous, which is likely why the
two approaches showed better correspondence when
applied to the whelk data set.
Contrasts of diet specialization between groups of

individuals is a common goal in studies of diet special-
ization. Although the three metrics of population-level
specialization we examined all exhibited positive correla-
tions with one another, the lnðwÞ and WIC/TNW indices
showed a higher correlation with one another than did
either index with the IS index. This result is likely driven
by the fact that IS reflects the average overlap between
individual diets and the population diet, whereas WIC/
TNWand lnðwÞ are based on the variation in population
diets explained by differences among individuals. We
advocate using lnðwÞ as a measure of specialization for
three reasons. First, there is a large body of statistical
literature on the Dirichlet distribution and its concentra-
tion parameter (see Agresti 2002). In contrast, the statis-
tical properties of WIC/TNW are unknown. Second,
(Roughgarden 1979) used the Shannon Diversity Index
as an analog for the variance of discrete data in calculat-
ing WIC/TNW (Appendix S2). The use of Shannon’s
Diversity Index requires taking the log of proportions,
which is known to cause the overestimation of diet
specialization if some individuals have consumed only a
single prey type (Bolnick et al. 2002). Third, combining
lnðwÞ with the estimates of the diet proportions of
individuals and groups allows for the determination of
the levels at which most variation in diet occurs, and the
particular prey that are responsible for that variation
among individuals and/or groups. For example, our
reanalysis of the whelk diet data provided insufficient

TABLE 1. The widely applicable information criterion (WAIC)
suggested that the models for the alligator data which had
individuals nested within site and individuals nested within
site and sex were indistinguishable (within 1 standard error
(SE) of one another), but were preferred over the model with
all individuals in the same hierarchical level. For the whelk
data, WAIC suggested that all of the models fit to the data
were indistinguishable. When WAIC was unable to
distinguish among models, we chose to analyze the simplest
model (bolded). D WAIC represents the difference between
the model with the lowest WAIC score and the other models
considered.

Organism and model WAIC SE ΔWAIC

Alligator
Individuals nested within site
and sex

9,008.5 138.6 0

Individuals nested within site 9,016.7 137.0 8.2
All individuals within the
same hierarchical level

9,381.6 125.6 373.1

Whelk
Individuals nested within size
class and site

905.2 30.0 0

All individuals within the same
hierarchical level

916.0 29.2 10.8

Individuals nested within
size class

925.5 31.7 20.3
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FIG. 5. (A) Individual-level estimates of diet specialization in American alligators were frequently higher when inferred by the
observed proportions method than by the Bayesian model, which differentiated sites but not sexes. (B) Site-level estimates of spe-
cialization from the Bayesian model differed across sites and were only weakly correlated with the corresponding observed propor-
tions estimates (C) WIC/TNWand (D) IS. (E) For whelks, the most parsimonious model did not differentiate sites and whelk sizes.
Its estimates of individual-level diet specialization were positively correlated with the observed proportions estimates, but the latter
consistently estimated higher levels of specialization. The gray lines in panels A and E represent the line of equality between esti-
mates from the Bayesian model and the observed proportions method.
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support for the hypothesis that diets differed across sites
or size classes, yet individuals still differed in the propor-
tions of common prey types that they consumed. Simi-
larly, our analysis showed equivocal support for sex
specific differentiation in alligator diets, yet diets differed
significantly among sites and among individuals within
sites. In this case, our analysis revealed that fishes and
invertebrates played primary roles in explaining the indi-
vidual differences in diets.
A further benefit of Bayesian methods is the ability to

estimate the variation around point estimates of diet spe-
cialization and prey preferences. Markov chain Monte
Carlo methods provide estimates of posterior variance
even in situations where it is otherwise difficult to derive
variance estimators directly or where asymptotic approxi-
mations are required (Gelman et al. 2013). For example,
some authors have called into question the variance esti-
mators for PSi provided by Feinsinger et al. (1981;
Bolnick et al. 2002). Indeed, estimates of the variance of
PSi from the Bayesian method showed little correspon-
dence with the variance estimated using Feinsinger et al.’s
equations (Appendix S4: Figure S3). Furthermore,
although variance can be estimated for IS and lnðwÞ,
there is no variance estimate for WIC/TNW. Although
Monte Carlo simulations have been used to determine the
significance of WIC/TNW and IS relative to null models
of feeding (Bolnick et al. 2002), these will also be prone
to low sample size problems (Efron and Tibshirani 1993).
Future extensions to the Bayesian hierarchical models

presented here will help to address further questions sur-
rounding the mechanisms underlying diet specialization.
For example, groups may appear to display higher diet
specialization relative to others due to differences in the
availability or handling times of prey rather than differ-
ences in individual diet preferences and specialization
per se (Novak 2010, Ara�ujo et al. 2011). The Bayesian
hierarchical model can be extended to explicitly address
this possibility by modeling the concentration parame-
ters as a function of such group-level attributes. A simi-
lar approach could also be used to examine the role of
intraspecific competition in promoting diet specializa-
tion by modeling the concentration parameters as a
function of resource availability relative to predator
abundance. Several other possibilities, such as including
individual-level covariates to determine the influence of
individual traits on diet specialization, make Bayesian
hierarchical models well-suited for addressing hypothe-
sis-driven questions regarding diet specialization and
predator foraging more generally.
It is important to note, however, that Bayesian poste-

rior distributions are a compromise between the assumed

prior distribution and the data-dependent likelihood
function, with the latter carrying more weight as sample
sizes increase (Gelman et al. 2013). We used uniform pri-
ors on the parameters describing the population level diet
(q~; Dirichlet(1~)) and the concentration parameters (w;
Uniform(0,c)). For the analysis of both empirical data
sets, we chose a maximum value of c = 30 for the uniform
prior on the concentration parameters because the effects
of increasing w on the proportional overlap among indi-
vidual diets saturated near 30 (Appendix S4: Figure S4).
Thus considering higher maximum values would not
likely qualitatively influence our inferences. Nevertheless,
it is important to allow for large enough values of w so as
not to artificially limit it to small values that could inflate
estimates of diet specialization. Further analyses of
intraspecific diet specialization within the Bayesian hier-
archical framework are needed to allow ecologists to
develop more empirically-grounded prior choices.
For methods of model fitting and parameter estimation

to be useful and generally applicable, it is important to
consider issues involved in implementing the method. For
example, we had difficulty fitting the hierarchical model to
the alligator gut content data with prey identities resolved
to the family level due to the sparsity of these data. To
address this problem, we grouped the prey items into func-
tional groups. Although the general influence of lumping
prey into functional groups is unknown for estimating diet
specialization because no systematic analyses have been
performed, it is a common practice that ought to reduce
the inferred strength of specialization. That said, previous
investigations have observed no qualitative and only weak
quantitative effects (Bolnick and Paull 2009, Novak and
Tinker 2015). Furthermore, models with particularly rare
prey taxa may face numerical issues involving the division
by probabilities very close to zero. These issues can be
resolved by adding a small constant to each probability
estimate or by only considering taxa that appear in the diet
over a certain abundance threshold, but the influences of
these choices needs further study.
Finally, it should be recognized that the Bayesian

models presented here are more difficult and require
more work to implement than many of the currently
used observed proportions methods. As an example, in
Bayesian analyses, the user must examine several model
diagnostics to ensure that the Markov Chains have con-
verged and are well mixed, that the burn-in period speci-
fied is long enough so as not to bias the posterior
distributions of parameters, and that posterior estimates
are reasonable (Gelman et al. 2013). Despite these
added complications, our study suggests that the infer-
ence of diet specialization from Bayesian hierarchical

FIG. 6. (A) American alligators showed variation in the mean proportion of the three most consumed prey items (Fi, fish; Mol,
mollusc; Cr, crustacean) among sites (lnðwsitesÞ ¼ 1:13) as well as among individuals, as illustrated by three exemplary sites (B,
lnðw17Þ ¼ 2:27; C, lnðw1Þ ¼ 0:71; D, lnðw11Þ ¼ 0:34). The labeled points within panel A show the site means for the three sites illus-
trated in panels B–D. (E) Whelks similarly showed variation in the proportion of the three most frequently consumed items (Os.,
Ostrea spp. Oysters; Ser, serpulid polychaetes; Sm, Siphonaria maura limpets). The gray points in each ternary plot represent either
the average population-level proportions (A, E) or the site-level average proportions (B–D).
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models is more reliable and provides greater ecological
insight into the diets of individuals and populations.
Thus, even when compared to the ease with which the
observed proportions methods may be implemented, the
Bayesian hierarchical method offers several advantages
that ultimately outweigh its additional complexity.
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